This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2011 IMO Shortlist, 3

Let $ABCD$ be a convex quadrilateral whose sides $AD$ and $BC$ are not parallel. Suppose that the circles with diameters $AB$ and $CD$ meet at points $E$ and $F$ inside the quadrilateral. Let $\omega_E$ be the circle through the feet of the perpendiculars from $E$ to the lines $AB,BC$ and $CD$. Let $\omega_F$ be the circle through the feet of the perpendiculars from $F$ to the lines $CD,DA$ and $AB$. Prove that the midpoint of the segment $EF$ lies on the line through the two intersections of $\omega_E$ and $\omega_F$. [i]Proposed by Carlos Yuzo Shine, Brazil[/i]

PEN H Problems, 41

Suppose that $A=1,2,$ or $3$. Let $a$ and $b$ be relatively prime integers such that $a^{2}+Ab^2 =s^3$ for some integer $s$. Then, there are integers $u$ and $v$ such that $s=u^2 +Av^2$, $a =u^3 - 3Avu^2$, and $b=3u^{2}v -Av^3$.

2014 BAMO, 4

Tags: geometry
Let $\triangle{ABC}$ be a scalene triangle with the longest side $AC$. (A ${\textit{scalene triangle}}$ has sides of different lengths.) Let $P$ and $Q$ be the points on the side $AC$ such that $AP=AB$ and $CQ=CB$. Thus we have a new triangle $\triangle{BPQ}$ inside $\triangle{ABC}$. Let $k_1$ be the circle circumscribed around the triangle $\triangle{BPQ}$ (that is, the circle passing through the vertices $B,P,$ and $Q$ of the triangle $\triangle{BPQ}$); and let $k_2$ be the circle inscribed in triangle $\triangle{ABC}$ (that is, the circle inside triangle $\triangle{ABC}$ that is tangent to the three sides $AB,BC$, and $CA$). Prove that the two circles $k_1$ and $k_2$ are concentric, that is, they have the same center.

2006 MOP Homework, 5

Let $ABCD$ be a convex quadrilateral. Lines $AB$ and $CD$ meet at $P$, and lines $AD$ and $BC$ meet at $Q$. Let $O$ be a point in the interior of $ABCD$ such that $\angle BOP = \angle DOQ$. Prove that $\angle AOB +\angle COD = 180$.

2025 Sharygin Geometry Olympiad, 23

Let us say that a subset $M$ of the plane contains a hole if there exists a disc not contained in $M$, but contained inside some polygon with the boundary lying in $M$. Can the plane be presented as a union of $n$ convex sets such that the union of any $n-1$ from them contains a hole? Proposed by: N.Spivak

2019 Estonia Team Selection Test, 6

It is allowed to perform the following transformations in the plane with any integers $a$: (1) Transform every point $(x, y)$ to the corresponding point $(x + ay, y)$, (2) Transform every point $(x, y)$ to the corresponding point $(x, y + ax)$. Does there exist a non-square rhombus whose all vertices have integer coordinates and which can be transformed to: a) Vertices of a square, b) Vertices of a rectangle with unequal side lengths?

2019 Centers of Excellency of Suceava, 3

The circumcenter, circumradius and orthocenter of a triangle $ ABC $ satisfying $ AB<AC $ are notated with $ O,R,H, $ respectively. Prove that the middle of the segment $ OH $ belongs to the line $ BC $ if $$ AC^2-AB^2=2R\cdot BC. $$ [i]Marius Marchitan[/i]

PEN R Problems, 8

Prove that on a coordinate plane it is impossible to draw a closed broken line such that [list][*] coordinates of each vertex are rational, [*] the length of its every edge is equal to $1$, [*] the line has an odd number of vertices.[/list]

1974 All Soviet Union Mathematical Olympiad, 191

a) Each of the side of the convex hexagon is longer than $1$. Does it necessary have a diagonal longer than $2$? b) Each of the main diagonals of the convex hexagon is longer than $2$. Does it necessary have a side longer than $1$?

2005 Iran MO (3rd Round), 1

Tags: limit , rotation , geometry
An airplane wants to go from a point on the equator, and at each moment it will go to the northeast with speed $v$. Suppose the radius of earth is $R$. a) Will the airplane reach to the north pole? If yes how long it will take to reach the north pole? b) Will the airplne rotate finitely many times around the north pole? If yes how many times?

1991 AIME Problems, 10

Two three-letter strings, $aaa$ and $bbb$, are transmitted electronically. Each string is sent letter by letter. Due to faulty equipment, each of the six letters has a 1/3 chance of being received incorrectly, as an $a$ when it should have been a $b$, or as a $b$ when it should be an $a$. However, whether a given letter is received correctly or incorrectly is independent of the reception of any other letter. Let $S_a$ be the three-letter string received when $aaa$ is transmitted and let $S_b$ be the three-letter string received when $bbb$ is transmitted. Let $p$ be the probability that $S_a$ comes before $S_b$ in alphabetical order. When $p$ is written as a fraction in lowest terms, what is its numerator?

Kvant 2022, M2685

Let $ABCD$ be a tetrahedron and suppose that $M$ is a point inside it such that $\angle MAD=\angle MBC$ and $\angle MDB=\angle MCA$. Prove that $$MA\cdot MB+MC\cdot MD<\max(AD\cdot BC,AC\cdot BD).$$

2012 Princeton University Math Competition, A1 / B4

Tags: geometry
Three circles, with radii of $1, 1$, and $2$, are externally tangent to each other. The minimum possible area of a quadrilateral that contains and is tangent to all three circles can be written as $a + b\sqrt{c}$ where $c$ is not divisible by any perfect square larger than $1$. Find $a + b + c$

DMM Individual Rounds, 2017

[b]p1.[/b] How many subsets of $\{D,U,K,E\}$ have an odd number of elements? [b]p2.[/b] Find the coefficient of $x^{12}$ in $(1 + x^2 + x^4 +... + x^{28})(1 + x + x^2 + ...+ x^{14})^2$. [b]p3.[/b] How many $4$-digit numbers have their digits in non-decreasing order from left to right? [b]p4.[/b] A dodecahedron (a polyhedron with $12$ faces, each a regular pentagon) is projected orthogonally onto a plane parallel to one of its faces to form a polygon. Find the measure (in degrees) of the largest interior angle of this polygon. [b]p5.[/b] Justin is back with a $6\times 6$ grid made of $36$ colorless squares. Dr. Kraines wants him to color some squares such that $\bullet$ Each row and column of the grid must have at least one colored square $\bullet$ For each colored square, there must be another colored square on the same row or column What is the minimum number of squares that Justin will have to color? [b]p6.[/b] Inside a circle $C$, we have three equal circles $C_1$, $C_2$, $C_3$, which are pairwise externally tangent to each other and all internally tangent to $C$. What is the ratio of the area of $C_1$ to the area of $C$? [b]p7.[/b] There are $3$ different paths between the Duke Chapel and the Physics building. $6$ students are heading towards the Physics building for a class, so they split into $3$ pairs and each pair takes a separate path from the Chapel. After class, they again split into $3$ pairs and take separate paths back. Find the number of possible scenarios where each student's companion on the way there is different from their companion on the way back. [b]p8.[/b] Let $a_n$ be a sequence that satisfies the recurrence relation $$a_na_{n+2} =\frac{\cos (3a_{n+1})}{\cos (a_{n+1})[2 \cos(2a_{n+1}) - 1]}a_{n+1}$$ with $a_1 = 2$ and $a_2 = 3$. Find the value of $2018a_{2017}$. [b]p9.[/b] Let $f(x)$ be a polynomial with minimum degree, integer coefficients, and leading coefficient of $1$ that satisfies $f(\sqrt7 +\sqrt{13})= 0$. What is the value of $f(10)$? [b]p10.[/b] $1024$ Duke students, indexed $1$ to $1024$, are having a chat. For each $1 \le i \le 1023$, student $i$ claims that student $2^{\lfloor \log_2 i\rfloor +1}$ has a girlfriend. ($\lfloor x \rfloor$ is the greatest integer less than or equal to $x$.) Given that exactly $201$ people are lying, find the index of the $61$st liar (ordered by index from smallest to largest). PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1988 French Mathematical Olympiad, Problem 4

Tags: geometry
A circle $\mathcal C$ and five distinct points $M_1,M_2,M_3,M_4$ and $M$ on $\mathcal C$ are given in the plane. Prove that the product of the distances from $M$ to lines $M_1M_2$ and $M_3M_4$ is equal to the product of the distances from $M$ to the lines $M_1M_3$ and $M_2M_4$. What can one deduce for $2n+1$ distinct points $M_1,\ldots,M_{2n},M$ on $\mathcal C$?

2011 QEDMO 8th, 6

A [i]synogon [/i] is a convex $2n$-gon with all sides of the same length and all opposite sides are parallel. Show that every synogon can be broken down into a finite number of rhombuses.

2018 IMAR Test, 1

Tags: locus , geometry
Let $ABC$ be a triangle whose angle at $A$ is right, and let $D$ be the foot of the altitude from $A$. A variable point $M$ traces the interior of the minor arc $AB$ of the circle $ABC$. The internal bisector of the angle $DAM$ crosses $CM$ at $N$. The line through $N$ and perpendicular to $CM$ crosses the line $AD$ at $P$. Determine the locus of the point where the line $BN$ crosses the line $CP$. [i]* * *[/i]

2022 HMIC, 2

Does there exist a regular pentagon whose vertices lie on the edges of a cube?

2018 Taiwan TST Round 3, 1

Let $ABCC_1B_1A_1$ be a convex hexagon such that $AB=BC$, and suppose that the line segments $AA_1, BB_1$, and $CC_1$ have the same perpendicular bisector. Let the diagonals $AC_1$ and $A_1C$ meet at $D$, and denote by $\omega$ the circle $ABC$. Let $\omega$ intersect the circle $A_1BC_1$ again at $E \neq B$. Prove that the lines $BB_1$ and $DE$ intersect on $\omega$.

Today's calculation of integrals, 854

Given a figure $F: x^2+\frac{y^2}{3}=1$ on the coordinate plane. Denote by $S_n$ the area of the common part of the $n+1' s$ figures formed by rotating $F$ of $\frac{k}{2n}\pi\ (k=0,\ 1,\ 2,\ \cdots,\ n)$ radians counterclockwise about the origin. Find $\lim_{n\to\infty} S_n$.

2020 Bulgaria National Olympiad, P1

Tags: geometry
On the sides of $\triangle{ABC}$ points $P,Q \in{AB}$ ($P$ is between $A$ and $Q$) and $R\in{BC}$ are chosen. The points $M$ and $N$ are defined as the intersection point of $AR$ with the segments $CP$ and $CQ$, respectively. If $BC=BQ$, $CP=AP$, $CR=CN$ and $\angle{BPC}=\angle{CRA}$, prove that $MP+NQ=BR$.

2006 Oral Moscow Geometry Olympiad, 3

Tags: locus , centroid , geometry
Two non-rolling circles $C_1$ and $C_2$ with centers $O_1$ and $O_2$ and radii $2R$ and $R$, respectively, are given on the plane. Find the locus of the centers of gravity of triangles in which one vertex lies on $C_1$ and the other two lie on $C_2$. (B. Frenkin)

2000 National Olympiad First Round, 13

Let $d$ be one of the common tangent lines of externally tangent circles $k_1$ and $k_2$. $d$ touches $k_1$ at $A$. Let $[AB]$ be a diameter of $k_1$. The tangent from $B$ to $k_2$ touches $k_2$ at $C$. If $|AB|=8$ and the diameter of $k_2$ is $7$, then what is $|BC|$? $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 6\sqrt 2 \qquad\textbf{(C)}\ 10 \qquad\textbf{(D)}\ 8 \qquad\textbf{(E)}\ 5\sqrt 3 $

1971 Polish MO Finals, 6

A regular tetrahedron with unit edge length is given. Prove that: (a) There exist four points on the surface $S$ of the tetrahedron, such that the distance from any point of the surface to one of these four points does not exceed $1/2$; (b) There do not exist three points with this property. The distance between two points on surface $S$ is defined as the length of the shortest polygonal line going over $S$ and connecting the two points.

1973 AMC 12/AHSME, 20

A cowboy is 4 miles south of a stream which flows due east. He is also 8 miles west and 7 miles north of his cabin. He wishes to water his horse at the stream and return home. The shortest distance (in miles) he can travel and accomplish this is $ \textbf{(A)}\ 4\plus{}\sqrt{185} \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 17 \qquad \textbf{(D)}\ 18 \qquad \textbf{(E)}\ \sqrt{32}\plus{}\sqrt{137}$