This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2009 Dutch IMO TST, 2

Let $ABC$ be a triangle, $P$ the midpoint of $BC$, and $Q$ a point on segment $CA$ such that $|CQ| = 2|QA|$. Let $S$ be the intersection of $BQ$ and $AP$. Prove that $|AS| = |SP|$.

2009 Sharygin Geometry Olympiad, 3

The cirumradius and the inradius of triangle $ABC$ are equal to $R$ and $r, O, I$ are the centers of respective circles. External bisector of angle $C$ intersect $AB$ in point $P$. Point $Q$ is the projection of $P$ to line $OI$. Find distance $OQ.$ (A.Zaslavsky, A.Akopjan)

Mathley 2014-15, 6

Let the inscribed circle $(I)$ of the triangle $ABC$, touches $CA, AB$ at $E, F$. $P$ moves along $EF$, $PB$ cuts $CA$ at $M, MI$ cuts the line, through $C$ perpendicular to $AC$, at $N$. Prove that the line through $N$ is perpendicular to $PC$ crosses a fixed point as $P$ moves. Tran Quang Hung, High School of Natural Sciences, Hanoi National University

2020 Iran Team Selection Test, 3

Given a triangle $ABC$ with circumcircle $\Gamma$. Points $E$ and $F$ are the foot of angle bisectors of $B$ and $C$, $I$ is incenter and $K$ is the intersection of $AI$ and $EF$. Suppose that $T$ be the midpoint of arc $BAC$. Circle $\Gamma$ intersects the $A$-median and circumcircle of $AEF$ for the second time at $X$ and $S$. Let $S'$ be the reflection of $S$ across $AI$ and $J$ be the second intersection of circumcircle of $AS'K$ and $AX$. Prove that quadrilateral $TJIX$ is cyclic. [i]Proposed by Alireza Dadgarnia and Amir Parsa Hosseini[/i]

Kvant 2022, M2691

There are $N{}$ points marked on the plane. Any three of them form a triangle, the values of the angles of which in are expressed in natural numbers (in degrees). What is the maximum $N{}$ for which this is possible? [i]Proposed by E. Bakaev[/i]

2009 Today's Calculation Of Integral, 504

Let $ a,\ b$ are positive constants. Determin the value of a positive number $ m$ such that the areas of four parts of the region bounded by two parabolas $ y\equal{}ax^2\minus{}b,\ y\equal{}\minus{}ax^2\plus{}b$ and the line $ y\equal{}mx$ have equal area.

2004 AMC 10, 23

Each face of a cube is painted either red or blue, each with probability $ 1/2$. The color of each face is determined independently. What is the probability that the painted cube can be placed on a horizontal surface so that the four vertical faces are all the same color? $ \textbf{(A)}\ \frac14 \qquad \textbf{(B)}\ \frac{5}{16} \qquad \textbf{(C)}\ \frac38 \qquad \textbf{(D)}\ \frac{7}{16} \qquad \textbf{(E)}\ \frac12$

1976 IMO Shortlist, 1

Let $ABC$ be a triangle with bisectors $AA_1,BB_1, CC_1$ ($A_1 \in BC$, etc.) and $M$ their common point. Consider the triangles $MB_1A, MC_1A,MC_1B,MA_1B,MA_1C,MB_1C$, and their inscribed circles. Prove that if four of these six inscribed circles have equal radii, then $AB = BC = CA.$

2022 Romania Team Selection Test, 2

Tags: geometry
Let $ABC$ be an acute triangle and let $B'$ and $C'$ be the feet of the heights $B$ and $C$ of triangle $ABC$ respectively. Let $B_A'$ and $B_C'$ be reflections of $B'$ with respect to the lines $BC$ and $AB$, respectively. The circle $BB_A'B_C'$, centered in $O_B$, intersects the line $AB$ in $X_B$ for the second time. The points $C_A', C_B', O_C, X_C$ are defined analogously, by replacing the pair $(B, B')$ with the pair $(C, C')$. Show that $O_BX_B$ and $O_CX_C$ are parallel.

2002 Flanders Junior Olympiad, 3

Is it possible to number the $8$ vertices of a cube from $1$ to $8$ in such a way that the value of the sum on every edge is different?

2012 Math Hour Olympiad, 8-10

[u]Round 1 [/u] [b]p1.[/b] In the Hundred Acre Wood, all the animals are either knights or liars. Knights always tell the truth and liars always lie. One day in the Wood, Winnie-the-Pooh, a knight, decides to visit his friend Rabbit, also a noble knight. Upon arrival, Pooh finds his friend sitting at a round table with $5$ other guests. One-by-one, Pooh asks each person at the table how many of his two neighbors are knights. Surprisingly, he gets the same answer from everybody! "Oh bother!" proclaims Pooh. "I still don't have enough information to figure out how many knights are at this table." "But it's my birthday," adds one of the guests. "Yes, it's his birthday!" agrees his neighbor. Now Pooh can tell how many knights are at the table. Can you? [b]p2.[/b] Harry has an $8 \times 8$ board filled with the numbers $1$ and $-1$, and the sum of all $64$ numbers is $0$. A magical cut of this board is a way of cutting it into two pieces so that the sum of the numbers in each piece is also $0$. The pieces should not have any holes. Prove that Harry will always be able to find a magical cut of his board. (The picture shows an example of a proper cut.) [img]https://cdn.artofproblemsolving.com/attachments/4/b/98dec239cfc757e6f2996eef7876cbfd79d202.png[/img] [b]p3.[/b] Several girls participate in a tennis tournament in which each player plays each other player exactly once. At the end of the tournament, it turns out that each player has lost at least one of her games. Prove that it is possible to find three players $A$, $B$, and $C$ such that $A$ defeated $B$, $B$ defeated $C$, and $C$ defeated $A$. [b]p4.[/b] $120$ bands are participating in this year's Northwest Grunge Rock Festival, and they have $119$ fans in total. Each fan belongs to exactly one fan club. A fan club is called crowded if it has at least $15$ members. Every morning, all the members of one of the crowded fan clubs start arguing over who loves their favorite band the most. As a result of the fighting, each of them leaves the club to join another club, but no two of them join the same one. Is it true that, no matter how the clubs are originally arranged, all these arguments will eventually stop? [b]p5.[/b] In Infinite City, the streets form a grid of squares extending infinitely in all directions. Bonnie and Clyde have just robbed the Infinite City Bank, located at the busiest intersection downtown. Bonnie sets off heading north on her bike, and, $30$ seconds later, Clyde bikes after her in the same direction. They each bike at a constant speed of $1$ block per minute. In order to throw off any authorities, each of them must turn either left or right at every intersection. If they continue biking in this manner, will they ever be able to meet? [u]Round 2 [/u] [b]p6.[/b] In a certain herd of $33$ cows, each cow weighs a whole number of pounds. Farmer Dan notices that if he removes any one of the cows from the herd, it is possible to split the remaining $32$ cows into two groups of equal total weight, $16$ cows in each group. Show that all $33$ cows must have the same weight. [b]p7.[/b] Katniss is thinking of a positive integer less than $100$: call it $x$. Peeta is allowed to pick any two positive integers $N$ and $M$, both less than $100$, and Katniss will give him the greatest common divisor of $x+M$ and $N$ . Peeta can do this up to seven times, after which he must name Katniss' number $x$, or he will die. Can Peeta ensure his survival? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1965 Spain Mathematical Olympiad, 8

Tags: series , geometry
Let be $\gamma_1$ a circumference of radius $r$ and $P$ an exterior point that is at distance $a$ from the centre of $\gamma_1$. We build two tangent lines $r,s$ to $\gamma_1$ from $P$ and $\gamma_2$ is constructed as a smaller circumference, tangent to both lines and, also, tangent to $\gamma_1$. We construct inductively $\gamma_{n+1}$ as a tangent circumference to $\gamma_{n}$ and, also, tangent to $r$ and $s$. Determine: a) The radius of $\gamma_2$. b) The radius of $\gamma_n$. c) The sum of the lengths of $\gamma_1, \gamma_2, \gamma_3, ...$.

2008 JBMO Shortlist, 4

Tags: geometry
Let $ABC$ be a triangle, ($BC < AB$). The line $l$ passing trough the vertices $C$ and orthogonal to the angle bisector $BE$ of $\angle B$, meets $BE$ and the median $BD$ of the side $AC$ at points $F$ and $G$, respectively. Prove that segment $DF$ bisects the segment $EG$.

Kvant 2021, M2668

Two circles are given for which there is a family of quadrilaterals circumscribed around the first circle and inscribed in the second. Let's denote by $a, b, c$ and $d{}$ the consecutive lengths of the sides of one of these quadrilaterals. Prove that the sum \[\frac{a}{c}+\frac{c}{a}+\frac{b}{d}+\frac{d}{b}\]does not depend on the choice of the quadrilateral. [i]Proposed by I. Weinstein[/i]

2004 Estonia National Olympiad, 3

Let $K, L, M$ be the feet of the altitudes drawn from the vertices $A, B, C$ of triangle $ABC$, respectively. Prove that $\overrightarrow{AK} + \overrightarrow{BL} + \overrightarrow{CM} = \overrightarrow{O}$ if and only if $ABC$ is equilateral.

2019 Harvard-MIT Mathematics Tournament, 2

Tags: hmmt , rectangle , geometry
In rectangle $ABCD$, points $E$ and $F$ lie on sides $AB$ and $CD$ respectively such that both $AF$ and $CE$ are perpendicular to diagonal $BD$. Given that $BF$ and $DE$ separate $ABCD$ into three polygons with equal area, and that $EF = 1$, find the length of $BD$.

1985 IMO Longlists, 73

Tags: geometry
Let $A_1A_2,B_1B_2, C_1C_2$ be three equal segments on the three sides of an equilateral triangle. Prove that in the triangle formed by the lines $B_2C_1, C_2A_1,A_2B_1$, the segments $B_2C_1, C_2A_1,A_2B_1$ are proportional to the sides in which they are contained.

1985 IMO Longlists, 52

Tags: geometry
In the triangle $ABC$, let $B_1$ be on $AC, E$ on $AB, G$ on $BC$, and let $EG$ be parallel to $AC$. Furthermore, let $EG$ be tangent to the inscribed circle of the triangle $ABB_1$ and intersect $BB_1$ at $F$. Let $r, r_1$, and $r_2$ be the inradii of the triangles $ABC, ABB_1$, and $BFG$, respectively. Prove that $r = r_1 + r_2.$

1997 Tournament Of Towns, (539) 4

All edges of a tetrahedron $ABCD$ are equal. The tetrahedron $ABCD$ is inscribed in a sphere. $CC'$ and $DD'$ are diameters. Find the angle between the planes $ABC$' and $ACD'$. (A Zaslavskiy)

2024 IFYM, Sozopol, 3

Tags: geometry
Given a parallelogram \(ABCD\). Let \(\ell_1\) be the line through \(D\), parallel to \(AC\), and \(\ell_2\) the external bisector of \(\angle ACD\). The lines \(\ell_1\) and \(\ell_2\) intersect at \(E\). The lines \(\ell_1\) and \(AB\) intersect at \(F\), and the line \(\ell_2\) intersects the internal bisector of \(\angle BAC\) at \(X\). The line \(BX\) intersects the circumcircle of triangle \(EFX\) at a second point \(Y\). The internal bisector of \(\angle ACD\) intersects the circumcircle of triangle \(ACX\) at a second point \(Z\). Prove that the quadrilateral \(DXYZ\) is inscribed in a circle.

JBMO Geometry Collection, 2021

Tags: geometry
Let $ABC$ be an acute scalene triangle with circumcenter $O$. Let $D$ be the foot of the altitude from $A$ to the side $BC$. The lines $BC$ and $AO$ intersect at $E$. Let $s$ be the line through $E$ perpendicular to $AO$. The line $s$ intersects $AB$ and $AC$ at $K$ and $L$, respectively. Denote by $\omega$ the circumcircle of triangle $AKL$. Line $AD$ intersects $\omega$ again at $X$. Prove that $\omega$ and the circumcircles of triangles $ABC$ and $DEX$ have a common point.

2019 Hanoi Open Mathematics Competitions, 5

Let $ABC$ be a triangle and $AD$ be the bisector of the triangle ($D \in (BC)$) Assume that $AB =14$ cm, $AC = 35$ cm and $AD = 12$ cm; which of the following is the area of triangle $ABC$ in cm$^2$? [b]A.[/b] $\frac{1176}{5}$ [b]B.[/b] $\frac{1167}{5}$ [b]C.[/b] $234$ [b]D.[/b] $\frac{1176}{7}$ [b]E.[/b] $236$

2011 Peru IMO TST, 2

Let $A_1A_2 \ldots A_n$ be a convex polygon. Point $P$ inside this polygon is chosen so that its projections $P_1, \ldots , P_n$ onto lines $A_1A_2, \ldots , A_nA_1$ respectively lie on the sides of the polygon. Prove that for arbitrary points $X_1, \ldots , X_n$ on sides $A_1A_2, \ldots , A_nA_1$ respectively, \[\max \left\{ \frac{X_1X_2}{P_1P_2}, \ldots, \frac{X_nX_1}{P_nP_1} \right\} \geq 1.\] [i]Proposed by Nairi Sedrakyan, Armenia[/i]

Geometry Mathley 2011-12, 8.1

Let $ABC$ be a triangle and $ABDE, BCFZ, CAKL$ be three similar rectangles constructed externally of the triangle. Let $A'$ be the intersection of $EF$ and $ZK, B'$ the intersection of $KZ$ and $DL$, and $C'$ the intersection of $DL$ and $EF$. Prove that $AA'$ passes through the midpoint of the line segment $B'C'$. Kostas Vittas

2024 Sharygin Geometry Olympiad, 9

Let $ABCD$ ($AD \parallel BC$) be a trapezoid circumscribed around a circle $\omega$, which touches the sides $AB, BC, CD, $ and $AD$ at points $P, Q, R, S$ respectively. The line passing through $P$ and parallel to the bases of the trapezoid meets $QR$ at point $X$. Prove that $AB, QS$ and $DX$ concur.