This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2022 Serbia National Math Olympiad, P1

Tags: geometry
Let $k$ be incircle of acute triangle $ABC$, $AC\neq BC$, and $l$ be excircle that touches $AB$. Line $p$ through the $C$ is orthogonal to $AB$, $p\cap k = \{X, Y\}$ , $p\cap l = \{Z, T\}$ and the point arrangement is $X-Y-Z-T$. Circle $m$ through $X$ and $Z$ intersects $AB$ at $D$ and $E$. Prove that points $D,Y,E,T$ are concyclic.

2014 Saint Petersburg Mathematical Olympiad, 4

Points $B_1,C_1$ are on $AC$ and $AB$ and $B_1C_1 \parallel BC$. Circumcircle of $ABB_1$ intersect $CC_1$ at $L$. Circumcircle $CLB_1$ is tangent to $AL$. Prove $AL \leq \frac{AC+AC_1}{2}$

2017 Oral Moscow Geometry Olympiad, 4

Prove that a circle constructed with the side $AB$ of a triangle $ABC$ as a diameter touches the inscribed circle of the triangle $ABC$ if and only if the side $AB$ is equal to the radius of the exircle on that side.

2010 China Team Selection Test, 1

Let $\triangle ABC$ be an acute triangle, and let $D$ be the projection of $A$ on $BC$. Let $M,N$ be the midpoints of $AB$ and $AC$ respectively. Let $\Gamma_1$ and $\Gamma_2$ be the circumcircles of $\triangle BDM$ and $\triangle CDN$ respectively, and let $K$ be the other intersection point of $\Gamma_1$ and $\Gamma_2$. Let $P$ be an arbitrary point on $BC$ and $E,F$ are on $AC$ and $AB$ respectively such that $PEAF$ is a parallelogram. Prove that if $MN$ is a common tangent line of $\Gamma_1$ and $\Gamma_2$, then $K,E,A,F$ are concyclic.

2008 Grigore Moisil Intercounty, 2

Given a convex quadrilateral $ ABCD, $ find the locus of points $ X $ that verify the qualities: $$ XA^2+XB^2+CD^2=XB^2+XC^2+DA^2=XC^2+XD^2+AB^2=XD^2+XA^2+BC^2 $$ [i]Maria Pop[/i]

2010 Harvard-MIT Mathematics Tournament, 4

Tags: geometry
Let $ABCD$ be an isosceles trapezoid such that $AB=10$, $BC=15$, $CD=28$, and $DA=15$. There is a point $E$ such that $\triangle AED$ and $\triangle AEB$ have the same area and such that $EC$ is minimal. Find $EC$.

2017 Bulgaria EGMO TST, 2

Let $ABC$ be a triangle with incenter $I$. The line $AI$ intersects $BC$ and the circumcircle of $ABC$ at the points $T$ and $S$, respectively. Let $K$ and $L$ be the incenters of $SBT$ and $SCT$, respectively, $M$ be the midpoint of $BC$ and $P$ be the reflection of $I$ with respect to $KL$. a) Prove that $M$, $T$, $K$ and $L$ are concyclic. b) Determine the measure of $\angle BPC$.

2019 Regional Olympiad of Mexico West, 4

Let $ABC$ be a triangle. $M$ the midpoint of $AB$ and $L$ the midpoint of $BC$. We denote by $G$ the intersection of $AL$ with $CM$ and we take $E$ a point such that $G$ is the midpoint of the segment $AE$. Prove that the quadrilateral $MCEB$ is cyclic if and only if $MB = BG$.

2008 Tuymaada Olympiad, 3

Point $ I_1$ is the reflection of incentre $ I$ of triangle $ ABC$ across the side $ BC$. The circumcircle of $ BCI_1$ intersects the line $ II_1$ again at point $ P$. It is known that $ P$ lies outside the incircle of the triangle $ ABC$. Two tangents drawn from $ P$ to the latter circle touch it at points $ X$ and $ Y$. Prove that the line $ XY$ contains a medial line of the triangle $ ABC$. [i]Author: L. Emelyanov[/i]

1983 IMO Longlists, 48

Prove that in any parallelepiped the sum of the lengths of the edges is less than or equal to twice the sum of the lengths of the four diagonals.

2013 Iran Team Selection Test, 1

In acute-angled triangle $ABC$, let $H$ be the foot of perpendicular from $A$ to $BC$ and also suppose that $J$ and $I$ are excenters oposite to the side $AH$ in triangles $ABH$ and $ACH$. If $P$ is the point that incircle touches $BC$, prove that $I,J,P,H$ are concyclic.

2006 Germany Team Selection Test, 3

Tags: geometry
Does there exist a set $ M$ of points in space such that every plane intersects $ M$ at a finite but nonzero number of points?

2008 Purple Comet Problems, 19

One side of a triangle has length $75$. Of the other two sides, the length of one is double the length of the other. What is the maximum possible area for this triangle

1998 Tournament Of Towns, 5

Pinocchio claims that he can divide an isoceles triangle into three triangles, any two of which can be put together to form a new isosceles triangle. Is Pinocchio lying? (A Shapovalov)

2019 Iranian Geometry Olympiad, 1

Tags: geometry
Two circles $\omega_1$ and $\omega_2$ with centers $O_1$ and $O_2$ respectively intersect each other at points $A$ and $B$, and point $O_1$ lies on $\omega_2$. Let $P$ be an arbitrary point lying on $\omega_1$. Lines $BP, AP$ and $O_1O_2$ cut $\omega_2$ for the second time at points $X$, $Y$ and $C$, respectively. Prove that quadrilateral $XPYC$ is a parallelogram. [i]Proposed by Iman Maghsoudi[/i]

2020 Sharygin Geometry Olympiad, 24

Let $I$ be the incenter of a tetrahedron $ABCD$, and $J$ be the center of the exsphere touching the face $BCD$ containing three remaining faces (outside these faces). The segment $IJ$ meets the circumsphere of the tetrahedron at point $K$. Which of two segments $IJ$ and $JK$ is longer?

2012 Argentina Cono Sur TST, 1

Sofía colours $46$ cells of a $9 \times 9$ board red. If Pedro can find a $2 \times 2$ square from the board that has $3$ or more red cells, he wins; otherwise, Sofía wins. Determine the player with the winning strategy.

2018 Sharygin Geometry Olympiad, 8

Tags: geometry
Two triangles $ABC$ and $A'B'C'$ are given. The lines $AB$ and $A'B'$ meet at $C_1$ and the lines parallel to them and passing through $C$ and $C'$ meet at $C_2$. The points $A_1,A_2$, $B_1,B_2$ are defined similarly. Prove that $A_1A_2,B_1B_2,C_1C_1$ are either parallel or concurrent.

2020 Greece Team Selection Test, 2

Given a triangle $ABC$ inscribed in circle $c(O,R)$ (with center $O$ and radius $R$) with $AB<AC<BC$ and let $BD$ be a diameter of the circle $c$. The perpendicular bisector of $BD$ intersects line $AC$ at point $M$ and line $AB$ at point $N$. Line $ND$ intersects the circle $c$ at point $T$. Let $S$ be the second intersection point of cicumcircles $c_1$ of triangle $OCM$, and $c_2$ of triangle $OAD$. Prove that lines $AD, CT$ and $OS$ pass through the same point.

1966 IMO Shortlist, 1

Given $n>3$ points in the plane such that no three of the points are collinear. Does there exist a circle passing through (at least) $3$ of the given points and not containing any other of the $n$ points in its interior ?

2014 Indonesia Juniors, day 2

p1. Nurbaya's rectangular courtyard will be covered by a number of paving blocks in the form of a regular hexagon or its pieces like the picture below. The length of the side of the hexagon is $ 12$ cm. [img]https://cdn.artofproblemsolving.com/attachments/6/1/281345c8ee5b1e80167cc21ad39b825c1d8f7b.png[/img] Installation of other paving blocks or pieces thereof so that all fully covered page surface. To cover the entire surface The courtyard of the house required $603$ paving blocks. How many paving blocks must be cut into models $A, B, C$, and $D$ for the purposes of closing. If $17$ pieces of model $A$ paving blocks are needed, how many the length and width of Nurbaya's yard? Count how much how many pieces of each model $B, C$, and $D$ paving blocks are used. p2. Given the square $PQRS$. If one side lies on the line $y = 2x - 17$ and its two vertices lie on the parabola $y = x^2$, find the maximum area of possible squares $PQRS$ . p3. In the triangular pyramid $T.ABC$, the points $E, F, G$, and $H$ lie at , respectively $AB$, $AC$, $TC$, and $TB$ so that $EA : EB = FA : FC = HB : HT = GC : GT = 2:1$. Determine the ratio of the volumes of the two halves of the divided triangular pyramid by the plane $EFGH$. p4. We know that $x$ is a non-negative integer and $y$ is an integer. Define all pair $(x, y)$ that satisfy $1 + 2^x + 2^{2x + 1} = y^2$. p5. The coach of the Indonesian basketball national team will select the players for become a member of the core team. The coach will judge five players $A, B, C, D$ and $E$ in one simulation (or trial) match with total time $80$ minute match. At any time there is only one in five players that is playing. There is no limit to the number of substitutions during the match. Total playing time for each player $A, B$, and $C$ are multiples of $5$ minutes, while the total playing time of each players $D$ and $E$ are multiples of $7$ minutes. How many ways each player on the field based on total playing time?

2000 Croatia National Olympiad, Problem 4

Let $ABCD$ be a square with side $20$ and $T_1, T_2, ..., T_{2000}$ are points in $ABCD$ such that no $3$ points in the set $S = \{A, B, C, D, T_1, T_2, ..., T_{2000}\}$ are collinear. Prove that there exists a triangle with vertices in $S$, such that the area is less than $1/10$.

2014 Tuymaada Olympiad, 2

The points $K$ and $L$ on the side $BC$ of a triangle $\triangle{ABC}$ are such that $\widehat{BAK}=\widehat{CAL}=90^\circ$. Prove that the midpoint of the altitude drawn from $A$, the midpoint of $KL$ and the circumcentre of $\triangle{ABC}$ are collinear. [i](A. Akopyan, S. Boev, P. Kozhevnikov)[/i]

1980 IMO, 3

Tags: geometry
Two circles $C_1$ and $C_2$ are tangent at a point $P$. The straight line at $D$ is tangent at $A$ to one of the circles and cuts the other circle at the points $B$ and $C$. Prove that the straight line $PA$ is a bisector (interior or exterior) of the angle $BPC$.

2003 China Team Selection Test, 3

(1) $D$ is an arbitary point in $\triangle{ABC}$. Prove that: \[ \frac{BC}{\min{AD,BD,CD}} \geq \{ \begin{array}{c} \displaystyle 2\sin{A}, \ \angle{A}< 90^o \\ \\ 2, \ \angle{A} \geq 90^o \end{array} \] (2)$E$ is an arbitary point in convex quadrilateral $ABCD$. Denote $k$ the ratio of the largest and least distances of any two points among $A$, $B$, $C$, $D$, $E$. Prove that $k \geq 2\sin{70^o}$. Can equality be achieved?