This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2018 PUMaC Individual Finals B, 3

Tags: geometry
Let $ABC$ be a triangle. Construct three circles $k_1$, $k_2$, and $k_3$ with the same radius such that they intersect each other at a common point $O$ inside the triangle $ABC$ and $k_1\cap k_2=\{A,O\}$, $k_2 \cap k_3=\{B,O\}$, $k_3\cap k_1=\{C,O\}$. Let $t_a$ be a common tangent of circles $k_1$ and $k_2$ such that $A$ is closer to $t_a$ than $O$. Define $t_b$ and $t_c$ similarly. Those three tangents determine a triangle $MNP$ such that the triangle $ABC$ is inside the triangle $MNP$. Prove that the area of $MNP$ is at least $9$ times the area of $ABC$.

2008 Turkey Junior National Olympiad, 1

Let $ABC$ be a right triangle with $m(\widehat {C}) = 90^\circ$, and $D$ be its incenter. Let $N$ be the intersection of the line $AD$ and the side $CB$. If $|CA|+|AD|=|CB|$, and $|CN|=2$, then what is $|NB|$?

2004 Croatia Team Selection Test, 3

A line intersects a semicircle with diameter $AB$ and center $O$ at $C$ and $D$, and the line $AB$ at $M$, where $MB < MA$ and $MD < MC.$ If the circumcircles of the triangles $AOC$ and $DOB$ meet again at $K,$ prove that $\angle MKO$ is right.

2004 Turkey Team Selection Test, 2

Let $\triangle ABC$ be an acute triangle, $O$ be its circumcenter, and $D$ be a point different that $A$ and $C$ on the smaller $AC$ arc of its circumcircle. Let $P$ be a point on $[AB]$ satisfying $\widehat{ADP} = \widehat {OBC}$ and $Q$ be a point on $[BC]$ satisfying $\widehat{CDQ}=\widehat {OBA}$. Show that $\widehat {DPQ} = \widehat {DOC}$.

2013 IPhOO, 8

A right-triangulated prism made of benzene sits on a table. The hypotenuse makes an angle of $30^\circ$ with the horizontal table. An incoming ray of light hits the hypotenuse horizontally, and leaves the prism from the vertical leg at an acute angle of $ \gamma $ with respect to the vertical leg. Find $\gamma$, in degrees, to the nearest integer. The index of refraction of benzene is $1.50$. [i](Proposed by Ahaan Rungta)[/i]

2004 China National Olympiad, 1

Tags: geometry
Let $EFGH,ABCD$ and $E_1F_1G_1H_1$ be three convex quadrilaterals satisfying: i) The points $E,F,G$ and $H$ lie on the sides $AB,BC,CD$ and $DA$ respectively, and $\frac{AE}{EB}\cdot\frac{BF}{FC}\cdot \frac{CG}{GD}\cdot \frac{DH}{HA}=1$; ii) The points $A,B,C$ and $D$ lie on sides $H_1E_1,E_1F_1,F_1,G_1$ and $G_1H_1$ respectively, and $E_1F_1||EF,F_1G_1||FG,G_1H_1||GH,H_1E_1||HE$. Suppose that $\frac{E_1A}{AH_1}=\lambda$. Find an expression for $\frac{F_1C}{CG_1}$ in terms of $\lambda$. [i]Xiong Bin[/i]

2005 AIME Problems, 11

A semicircle with diameter $d$ is contained in a square whose sides have length $8$. Given the maximum value of $d$ is $m- \sqrt{n}$, find $m+n$.

2008 Harvard-MIT Mathematics Tournament, 1

How many different values can $ \angle ABC$ take, where $ A,B,C$ are distinct vertices of a cube?

2011 Saudi Arabia Pre-TST, 1.3

The quadrilateral $ABCD$ has $AD = DC = CB < AB$ and $AB \parallel CD$. Points $E$ and $F$ lie on the sides $CD$ and $BC$ such that $\angle ADE = \angle AEF$. Prove that: (a) $4CF \le CB$. (b) If $4CF = CB$, then $AE$ is the angle bisector of $\angle DAF$.

1969 AMC 12/AHSME, 13

Tags: geometry
A circle with radius $r$ is contained within the region bounded by a circle with radius $R$. The area bounded by the larger circle is $a/b$ times the area of the region outside the smaller circle and inside the larger circle. Then $R:r$ equals: $\textbf{(A) }\sqrt a:\sqrt b\qquad \textbf{(B) }\sqrt a:\sqrt{a-b}\qquad \textbf{(C) }\sqrt b:\sqrt{a-b}\qquad$ $\textbf{(D) }a:\sqrt{a-b}\qquad \textbf{(E) }b:\sqrt{a-b}$

VI Soros Olympiad 1999 - 2000 (Russia), 9.9

Tags: square , geometry
On the plane there are two isosceles non-intersecting right triangles $ABC$ and $DEC$ ($AB$ and $DE$ are the hypotenuses,$ ABDE$ is a convex quadrilateral), and $AB = 2 DE$. Let's construct two more isosceles right triangles: $BDF$ (with hypotenuse $BF$ located outside triangle $BDC$) and $AEG$ (with hypotenuse $AG$ located outside triangle $AEC$). Prove that the line $FG$ passes through a point $N$ such that $DCEN$ is a square.

2024 Yasinsky Geometry Olympiad, 2

Let $I$ be the incenter and $O$ be the circumcenter of triangle $ABC,$ where $\angle A < \angle B < \angle C.$ Points $P$ and $Q$ are such that $AIOP$ and $BIOQ$ are isosceles trapezoids ($AI \parallel OP,$ $BI \parallel OQ$). Prove that $CP = CQ.$ [i]Proposed by Volodymyr Brayman and Matthew Kurskyi[/i]

2015 Belarus Team Selection Test, 2

The medians $AM$ and $BN$ of a triangle $ABC$ are the diameters of the circles $\omega_1$ and $\omega_2$. If $\omega_1$ touches the altitude $CH$, prove that $\omega_2$ also touches $CH$. I. Gorodnin

2004 Mid-Michigan MO, 10-12

[b]p1.[/b] Two players play the following game. On the lowest left square of an $8 \times 8$ chessboard there is a rook (castle). The first player is allowed to move the rook up or to the right by an arbitrary number of squares. The second layer is also allowed to move the rook up or to the right by an arbitrary number of squares. Then the first player is allowed to do this again, and so on. The one who moves the rook to the upper right square wins. Who has a winning strategy? [b]p2.[/b] Find the smallest positive whole number that ends with $17$, is divisible by $17$, and the sum of its digits is $17$. [b]p3.[/b] Three consecutive $2$-digit numbers are written next to each other. It turns out that the resulting $6$-digit number is divisible by $17$. Find all such numbers. [b]p4.[/b] Let $ABCD$ be a convex quadrilateral (a quadrilateral $ABCD$ is called convex if the diagonals $AC$ and $BD$ intersect). Suppose that $\angle CBD = \angle CAB$ and $\angle ACD = \angle BDA$ . Prove that $\angle ABC = \angle ADC$. [b]p5.[/b] A circle of radius $1$ is cut into four equal arcs, which are then arranged to make the shape shown on the picture. What is its area? [img]https://cdn.artofproblemsolving.com/attachments/f/3/49c3fe8b218ab0a5378ecc635b797a912723f9.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2024 Caucasus Mathematical Olympiad, 8

Tags: geometry
Let $ABC$ be an acute triangle and let $X$ be a variable point on $AC$. The incircle of $\triangle ABX$ touches $AX, BX$ at $K, P$, respectively. The incircle of $\triangle BCX$ touches $CX, BX$ at $L, Q$, respectively. Find the locus of $KP \cap LQ$.

1990 Tournament Of Towns, (261) 5

Does there exist a convex polyhedron which has a triangular section (by a plane not passing through the vertices) and each vertex of the polyhedron belonging to (a) no less than $ 5$ faces? (b) exactly $5$ faces? (G. Galperin)

2019 PUMaC Geometry A, 6

Let two ants stand on the perimeter of a regular $2019$-gon of unit side length. One of them stands on a vertex and the other one is on the midpoint of the opposite side. They start walking along the perimeter at the same speed counterclockwise. The locus of their midpoints traces out a figure $P$ in the plane with $N$ corners. Let the area enclosed by the convex hull of $P$ be $\tfrac{A}{B}\tfrac{\sin^m\left(\tfrac{\pi}{4038}\right)}{\tan\left(\tfrac{\pi}{2019}\right)}$, where $A$ and $B$ are coprime positive integers, and $m$ is the smallest possible positive integer such that this formula holds. Find $A+B+m+N$. [i]Note:[/i] The [i]convex hull[/i] of a figure $P$ is the convex polygon of smallest area which contains $P$.

1997 Estonia Team Selection Test, 2

Tags: geometry
A quadrilateral $ABCD$ is inscribed in a circle. On each of the sides $AB,BC,CD,DA$ one erects a rectangle towards the interior of the quadrilateral, the other side of the rectangle being equal to $CD,DA,AB,BC,$ respectively. Prove that the centers of these four rectangles are vertices of a rectangle.

2010 HMNT, 10

Tags: geometry
You are given two diameters $AB$ and $CD$ of circle $\Omega$ with radius $1$. A circle is drawn in one of the smaller sectors formed such that it is tangent to $AB$ at $E$, tangent to $CD$ at $F$, and tangent to $\Omega$ at $P$. Lines $PE$ and $PF$ intersect $\Omega$ again at $X$ and $Y$ . What is the length of $XY$ , given that $AC = \frac23$ ?

2011 JHMT, 4

Tags: geometry
Compute the largest value of $r$ such that three non-overlapping circles of radius $r$ can be inscribed in a unit square.

2003 National High School Mathematics League, 8

Tags: conic , ellipse , geometry
$F_1,F_2$ are two focal points of ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$, $P$ is a point on the ellipse, and $|PF_1|:|PF_2|=2:1$, then the area of $\triangle PF_1F_2$ is________.

2019 China Western Mathematical Olympiad, 5

Tags: geometry
In acute-angled triangle $ABC,$ $AB>AC.$ Let $O,H$ be the circumcenter and orthocenter of $\triangle ABC,$ respectively. The line passing through $H$ and parallel to $AB$ intersects line $AC$ at $M,$ and the line passing through $H$ and parallel to $AC$ intersects line $AB$ at $N.$ $L$ is the reflection of the point $H$ in $MN.$ Line $OL$ and $AH$ intersect at $K.$ Prove that $K,M,L,N$ are concyclic.

2022 Romania Team Selection Test, 1

Alice is drawing a shape on a piece of paper. She starts by placing her pencil at the origin, and then draws line segments of length one, alternating between vertical and horizontal segments. Eventually, her pencil returns to the origin, forming a closed, non-self-intersecting shape. Show that the area of this shape is even if and only if its perimeter is a multiple of eight.

2020 Dutch BxMO TST, 4

Three different points $A,B$ and $C$ lie on a circle with center $M$ so that $| AB | = | BC |$. Point $D$ is inside the circle in such a way that $\vartriangle BCD$ is equilateral. Let $F$ be the second intersection of $AD$ with the circle . Prove that $| F D | = | FM |$.

2014 Singapore Senior Math Olympiad, 14

Tags: geometry
In triangle $\triangle ABC$, $D$ lies between $A$ and $C$ and $AC=3AD$, $E$ lies between $B$ and $C$ and $BC=4EC$. $B,G,F,D$ in that order, are on a straight line and $BD=5GF=5FD$. Suppose the area of $\triangle ABC$ is $900$, find the area of the triangle $\triangle EFG$.