Found problems: 25757
1998 AMC 12/AHSME, 29
A point $ (x,y)$ in the plane is called a lattice point if both $ x$ and $ y$ are integers. The area of the largest square that contains exactly three lattice points in its interior is closest to
$ \textbf{(A)}\ 4.0\qquad
\textbf{(B)}\ 4.2\qquad
\textbf{(C)}\ 4.5\qquad
\textbf{(D)}\ 5.0\qquad
\textbf{(E)}\ 5.6$
1982 IMO Longlists, 27
Let $O$ be a point of three-dimensional space and let $l_1, l_2, l_3$ be mutually perpendicular straight lines passing through $O$. Let $S$ denote the sphere with center $O$ and radius $R$, and for every point $M$ of $S$, let $S_M$ denote the sphere with center $M$ and radius $R$. We denote by $P_1, P_2, P_3$ the intersection of $S_M$ with the straight lines $l_1, l_2, l_3$, respectively, where we put $P_i \neq O$ if $l_i$ meets $S_M$ at two distinct points and $P_i = O$ otherwise ($i = 1, 2, 3$). What is the set of centers of gravity of the (possibly degenerate) triangles $P_1P_2P_3$ as $M$ runs through the points of $S$?
2023 Sinapore MO Open, P5
Determine all real numbers $x$ between $0$ and $180$ such that it is possible to partition an equilateral triangle into finitely many triangles, each of which has an angle of $x^{o}$.
2019 Iranian Geometry Olympiad, 2
As shown in the figure, there are two rectangles $ABCD$ and $PQRD$ with the same area, and with parallel corresponding edges. Let points $N,$ $M$ and $T$ be the midpoints of segments $QR,$ $PC$ and $AB$, respectively. Prove that points $N,M$ and $T$ lie on the same line.
[img]http://s4.picofile.com/file/8372959484/E02.png[/img]
[i]Proposed by Morteza Saghafian[/i]
2005 AIME Problems, 4
The director of a marching band wishes to place the members into a formation that includes all of them and has no unfilled positions. If they are arranged in a square formation, there are 5 members left over. The director realizes that if he arranges the group in a formation with 7 more rows than columns, there are no members left over. Find the maximum number of members this band can have.
2017 Ukrainian Geometry Olympiad, 4
Let $AD$ be the inner angle bisector of the triangle $ABC$. The perpendicular on the side $BC$ at the point $D$ intersects the outer bisector of $\angle CAB$ at point $I$. The circle with center $I$ and radius $ID$ intersects the sides $AB$ and $AC$ at points $F$ and $E$ respectively. $A$-symmedian of $\Delta AFE$ intersects the circumcircle of $\Delta AFE$ again at point $X$. Prove that the circumcircles of $\Delta AFE$ and $\Delta BXC$ are tangent.
1983 All Soviet Union Mathematical Olympiad, 355
The point $D$ is the midpoint of the side $[AB]$ of the triangle $ABC$ . The points $E$ and $F$ belong to $[AC]$ and $[BC]$ respectively. Prove that the area of triangle $DEF$ area does not exceed the sum of the areas of triangles $ADE$ and $BDF$.
2022 Balkan MO Shortlist, G2
Let $ABC$ be a triangle with $AB > AC$ with incenter $I{}$. The internal bisector of the angle $BAC$ intersects the $BC$ at the point $D{}$. Let $M{}$ the midpoint of the segment $AD{}$, and let $F{}$ be the second intersection point of $MB$ with the circumcircle of the triangle $BIC$. Prove that $AF$ is perpendicular to $FC$.
2012 Iran MO (3rd Round), 3
Cosider ellipse $\epsilon$ with two foci $A$ and $B$ such that the lengths of it's major axis and minor axis are $2a$ and $2b$ respectively. From a point $T$ outside of the ellipse, we draw two tangent lines $TP$ and $TQ$ to the ellipse $\epsilon$. Prove that
\[\frac{TP}{TQ}\ge \frac{b}{a}.\]
[i]Proposed by Morteza Saghafian[/i]
2013 Iran MO (3rd Round), 2
We define the distance between two circles $\omega ,\omega '$by the length of the common external tangent of the circles and show it by $d(\omega , \omega ')$. If two circles doesn't have a common external tangent then the distance between them is undefined. A point is also a circle with radius $0$ and the distance between two cirlces can be zero.
(a) [b]Centroid.[/b] $n$ circles $\omega_1,\dots, \omega_n$ are fixed on the plane. Prove that there exists a unique circle $\overline \omega$ such that for each circle $\omega$ on the plane the square of distance between $\omega$ and $\overline \omega$ minus the sum of squares of distances of $\omega$ from each of the $\omega_i$s $1\leq i \leq n$ is constant, in other words:\[d(\omega,\overline \omega)^2-\frac{1}{n}{\sum_{i=1}}^n d(\omega_i,\omega)^2= constant\]
(b) [b]Perpendicular Bisector.[/b] Suppose that the circle $\omega$ has the same distance from $\omega_1,\omega_2$. Consider $\omega_3$ a circle tangent to both of the common external tangents of $\omega_1,\omega_2$. Prove that the distance of $\omega$ from centroid of $\omega_1 , \omega_2$ is not more than the distance of $\omega$ and $\omega_3$. (If the distances are all defined)
(c) [b]Circumcentre.[/b] Let $C$ be the set of all circles that each of them has the same distance from fixed circles $\omega_1,\omega_2,\omega_3$. Prove that there exists a point on the plane which is the external homothety center of each two elements of $C$.
(d) [b]Regular Tetrahedron.[/b] Does there exist 4 circles on the plane which the distance between each two of them equals to $1$?
Time allowed for this problem was 150 minutes.
2022 Polish Junior Math Olympiad Finals, 1.
Given is a square $ABCD$ with side length $1$. Points $K$, $L$, $M$, and $N$, distinct from the vertices of the square, lie on segments $AB$, $BC$, $CD$, and $DA$, respectively. Prove that the perimeter of at least one of the triangles $ANK$, $BKL$, $CLM$, $DMN$ is less than $2$.
2001 Stanford Mathematics Tournament, 1
$ABCD$ is a square with sides of unit length. Points $E$ and $F$ are taken on sides $AB$ and $AD$ respectively so that $AE = AF$ and the quadrilateral $CDFE$ has maximum area. What is this maximum area?
1981 National High School Mathematics League, 1
Given two conditions:
A: Two triangles have the same area and two corresponding edge equal.
B: Two triangles are congruent.
Then, which one of the followings are true?
$(\text{A})$A is sufficient and necessary condition of B.
$(\text{B})$A is necessary but insufficient condition of B.
$(\text{C})$A is sufficient but unnecessary condition of B.
$(\text{D})$A is insufficient and unnecessary condition of B.
2008 USAPhO, 1
A charged particle with charge $q$ and mass $m$ is given an initial kinetic energy $K_0$ at the middle of a uniformly charged spherical region of total charge $Q$ and radius $R$. $q$ and $Q$ have opposite signs. The spherically charged region is not free to move. Throughout this problem consider electrostatic forces only.
[asy]
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
size(100);
filldraw(circle((0,0),1),gray(.8));
draw((0,0)--(0.5,sqrt(3)/2),EndArrow);
label("$R$",(0.25,sqrt(3)/4),SE);
[/asy]
(a) Find the value of $K_0$ such that the particle will just reach the boundary of the spherically charged region.
(b) How much time does it take for the particle to reach the boundary of the region if it starts with the kinetic energy $K_0$ found in part (a)?
2001 Poland - Second Round, 2
Points $A,B,C$ with $AB<BC$ lie in this order on a line. Let $ABDE$ be a square. The circle with diameter $AC$ intersects the line $DE$ at points $P$ and $Q$ with $P$ between $D$ and $E$. The lines $AQ$ and $BD$ intersect at $R$. Prove that $DP=DR$.
MMATHS Mathathon Rounds, 2014
[u]Round 5 [/u]
[b]p13.[/b] How many ways can we form a group with an odd number of members (plural) from $99$ people? Express your answer in the form $a^b + c$, where $a, b$, and $c$ are integers and $a$ is prime.
[b]p14.[/b] A cube is inscibed in a right circular cone such that the ratio of the height of the cone to the radius is $2:1$. Compute the fraction of the cone’s volume that the cube occupies.
[b]p15.[/b] Let $F_0 = 1$, $F_1 = 1$ and $F_k = F_{k-1} + F_{k-2}$. Let $P(x) = \sum^{99}_{k=0} x^{F_k}$ . The remainder when $P(x)$ is divided by $x^3 - 1$ can be expressed as $ax^2 + bx + c$. Find $2a + b$.
[u]Round 6 [/u]
[b]p16.[/b] Ankit finds a quite peculiar deck of cards in that each card has n distinct symbols on it and any two cards chosen from the deck will have exactly one symbol in common. The cards are guaranteed to not have a certain symbol which is held in common with all the cards. Ankit decides to create a function f(n) which describes the maximum possible number of cards in a set given the previous constraints. What is the value of $f(10)$?
[b]p17.[/b] If $|x| <\frac14$ and $$X = \sum^{\infty}_{N=0} \sum^{N}_{n=0} {N \choose n}x^{2n}(2x)^{N-n}.$$ then write $X$ in terms of $x$ without any summation or product symbols (and without an infinite number of ‘$+$’s, etc.).
[b]p18.[/b] Dietrich is playing a game where he is given three numbers $a, b, c$ which range from $[0, 3]$ in a continuous uniform distribution. Dietrich wins the game if the maximum distance between any two numbers is no more than $1$. What is the probability Dietrich wins the game?
[u]Round 7 [/u]
[b]p19.[/b] Consider f defined by $$f(x) = x^6 + a_1x^5 + a_2x^4 + a_3x^3 + a_4x^2 + a_5x + a_6.$$ How many tuples of positive integers $(a_1, a_2, a_3, a_4, a_5, a_6)$ exist such that $f(-1) = 12$ and $f(1) = 30$?
[b]p20.[/b] Let $a_n$ be the number of permutations of the numbers $S = \{1, 2, ... , n\}$ such that for all $k$ with $1 \le k \le n$, the sum of $k$ and the number in the $k$th position of the permutation is a power of $2$. Compute $a_1 + a_2 + a_4 + a_8 + ... + a_{1048576}$.
[b]p21.[/b] A $4$-dimensional hypercube of edge length $1$ is constructed in $4$-space with its edges parallel to the coordinate axes and one vertex at the origin. Its coordinates are given by all possible permutations of $(0, 0, 0, 0)$,$(1, 0, 0, 0)$,$(1, 1, 0, 0)$,$(1, 1, 1, 0)$, and $(1, 1, 1, 1)$. The $3$-dimensional hyperplane given by $x+y+z+w = 2$ intersects the hypercube at $6$ of its vertices. Compute the 3-dimensional volume of the solid formed by the intersection.
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c4h2781335p24424563]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2006 MOP Homework, 4
Let $ABC$ be a triangle with circumcenter $O$. Let $A_1$ be the midpoint of side $BC$. Ray $AA_1$ meet the circumcircle of triangle $ABC$ again at $A_2$ (other than A). Let $Q_a$ be the foot of the perpendicular from $A_1$ to line $AO$. Point $P_a$ lies on line $Q_aA_1$ such that $P_aA_2 \perp A_2O$. Define points $P_b$ and $P_c$ analogously. Prove that points $P_a$, P_b$, and $P_c$ lie on a line.
the 8th XMO, 1
As shown in the figure, two circles $\Gamma_1$ and $\Gamma_2$ on the plane intersect at two points $A$ and $B$. The two rays passing through $A$, $\ell_1$ and $\ell_2$ intersect $\Gamma_1$ at points $D$ and $E$ respectively, and $\Gamma_2$ at points $F$ and $C$ respectively (where $E$ and $F$ lie on line segments $AC$ and $AD$ respectively, and neither of them coincides with the endpoints). It is known that the three lines $AB$, $CF$ and $DE$ have a common point, the circumscribed circle of $\vartriangle AEF$ intersects $AB$ at point $G$, the straight line $EG$ intersects the circle $\Gamma_1$ at point $P$, the straight line $FG$ intersects the circle $\Gamma_2$ at point $Q$. Let the symmetric points of $C$ and $D$ wrt the straight line $AB$ be $C'$ and $D'$ respectively. If $PD'$ and $QC'$ intersect at point$ J$, prove that $J$ lies on the straight line $AB$.
[img]https://cdn.artofproblemsolving.com/attachments/3/7/eb3acdbad52750a6879b4b6955dfdb7de19ed3.png[/img]
2005 Today's Calculation Of Integral, 77
Find the area of the part enclosed by the following curve.
\[x^2+2axy+y^2=1\ (-1<a<1)\]
1994 Bundeswettbewerb Mathematik, 3
Given a triangle $A_1 A_2 A_3$ and a point $P$ inside. Let $B_i$ be a point on the side opposite to $A_i$ for $i=1,2,3$, and let $C_i$ and $D_i$ be the midpoints of $A_i B_i$ and $P B_i$, respectively. Prove that the triangles $C_1 C_2 C_3$ and $D_1 D_2 D_3$ have equal area.
2000 JBMO ShortLists, 22
Consider a quadrilateral with $\angle DAB=60^{\circ}$, $\angle ABC=90^{\circ}$ and $\angle BCD=120^{\circ}$. The diagonals $AC$ and $BD$ intersect at $M$. If $MB=1$ and $MD=2$, find the area of the quadrilateral $ABCD$.
2015 CCA Math Bonanza, I13
Let $ABCD$ be a tetrahedron such that $AD \perp BD$, $BD \perp CD$, $CD \perp AD$ and $AD=10$, $BD=15$, $CD=20$. Let $E$ and $F$ be points such that $E$ lies on $BC$, $DE \perp BC$, and $ADEF$ is a rectangle. If $S$ is the solid consisting of all points inside $ABCD$ but outside $FBCD$, compute the volume of $S$.
[i]2015 CCA Math Bonanza Individual Round #13[/i]
Kvant 2022, M2692
In the circle $\Omega$ the hexagon $ABCDEF$ is inscribed. It is known that the point $D{}$ divides the arc $BC$ in half, and the triangles $ABC$ and $DEF$ have a common inscribed circle. The line $BC$ intersects segments $DF$ and $DE$ at points $X$ and $Y$ and the line $EF$ intersects segments $AB$ and $AC$ at points $Z$ and $T$ respectively. Prove that the points $X, Y, T$ and $Z$ lie on the same circle.
[i]Proposed by D. Brodsky[/i]
2023 Moldova Team Selection Test, 10
Let $ABC$ be a triangle with $\angle ACB=90$ and $AC>BC.$ Let $\Omega$ be the circumcircle of $ABC.$ Point $ D $ is the midpoint of small arc $AC$ of $\Omega.$ Point $ M $ is symmetric with $ A$ with respect to $D.$ Point $ N$ is the midpoint of $MC.$ Line $AN$ intersects $\Omega$ in point $ P $ and line $BP$ intersects line $DN$ in point $Q.$ Prove that line $QM$ passes through the midpoint of $AC.$
2000 IMO Shortlist, 6
Let $ ABCD$ be a convex quadrilateral. The perpendicular bisectors of its sides $ AB$ and $ CD$ meet at $ Y$. Denote by $ X$ a point inside the quadrilateral $ ABCD$ such that $ \measuredangle ADX \equal{} \measuredangle BCX < 90^{\circ}$ and $ \measuredangle DAX \equal{} \measuredangle CBX < 90^{\circ}$. Show that $ \measuredangle AYB \equal{} 2\cdot\measuredangle ADX$.