Found problems: 25757
2013 Saint Petersburg Mathematical Olympiad, 6
Let $(I_b)$, $(I_c)$ are excircles of a triangle $ABC$. Given a circle $ \omega $ passes through $A$ and externally tangents to the circles $(I_b)$ and $(I_c)$ such that it intersects with $BC$ at points $M$, $N$.
Prove that $ \angle BAM=\angle CAN $.
A. Smirnov
Kyiv City MO 1984-93 - geometry, 1986.9.5
Prove that inside any convex hexagon with pairs of parallel sides of area $1$, you can draw a triangle of area $1/2$.
2007 Bulgarian Autumn Math Competition, Problem 10.2
Let $AC>BC$ in $\triangle ABC$ and $M$ and $N$ be the midpoints of $AC$ and $BC$ respectively. The angle bisector of $\angle B$ intersects $\overline{MN}$ at $P$. The incircle of $\triangle ABC$ has center $I$ and touches $BC$ at $Q$. The perpendiculars from $P$ and $Q$ to $MN$ and $BC$ respectively intersect at $R$. Let $S=AB\cap RN$.
a) Prove that $PCQI$ is cyclic
b) Express the length of the segment $BS$ with $a$, $b$, $c$ - the side lengths of $\triangle ABC$ .
2015 Costa Rica - Final Round, 1
Let $\vartriangle ABC$ be such that $\angle BAC$ is acute. The line perpendicular on side $AB$ from $C$ and the line perpendicular on $AC$ from $B$ intersect the circumscribed circle of $\vartriangle ABC$ at $D$ and $E$ respectively. If $DE = BC$ , calculate $\angle BAC$.
1999 Tournament Of Towns, 1
A right-angled triangle made of paper is folded along a straight line so that the vertex at the right angle coincides with one of the other vertices of the triangle and a quadrilateral is obtained .
(a) What is the ratio into which the diagonals of this quadrilateral divide each other?
(b) This quadrilateral is cut along its longest diagonal. Find the area of the smallest piece of paper thus obtained if the area of the original triangle is $1$ .
(A Shapovalov)
1967 Vietnam National Olympiad, 3
i) $ABCD$ is a rhombus. A tangent to the inscribed circle meets $AB, DA, BC, CD$ at $M, N, P, Q$ respectively. Find a relationship between $BM$ and $DN$.
ii) $ABCD$ is a rhombus and $P$ a point inside. The circles through $P$ with centers $A, B, C, D$ meet the four sides $AB, BC, CD, DA$ in eight points. Find a property of the resulting octagon. Use it to construct a regular octagon.
iii) Rotate the figure about the line $AC$ to form a solid. State a similar result.
2008 Sharygin Geometry Olympiad, 1
(B.Frenkin) Does a convex quadrilateral without parallel sidelines exist such that it can be divided into four congruent triangles?
2017 Thailand TSTST, 5
Let $\omega_1, \omega_2$ be two circles with different radii, and let $H$ be the exsimilicenter of the two circles. A point X outside both circles is given. The tangents from $X$ to $\omega_1$ touch $\omega_1$ at $P, Q$, and the tangents from $X$ to $\omega_2$ touch $\omega_2$ at $R, S$. If $PR$ passes through $H$ and is not a common tangent line of $\omega_1, \omega_2$, prove that $QS$ also passes through $H$.
2012 Purple Comet Problems, 12
Pentagon $ABCDE$ consists of a square $ACDE$ and an equilateral triangle $ABC$ that share the side $\overline{AC}$. A circle centered at $C$ has area 24. The intersection of the circle and the pentagon has half the area of the pentagon. Find the area of the pentagon.
[asy]/* File unicodetex not found. */
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(4.26cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -1.52, xmax = 2.74, ymin = -2.18, ymax = 6.72; /* image dimensions */
draw((0,1)--(2,1)--(2,3)--(0,3)--cycle);
draw((0,3)--(2,3)--(1,4.73)--cycle);
/* draw figures */
draw((0,1)--(2,1));
draw((2,1)--(2,3));
draw((2,3)--(0,3));
draw((0,3)--(0,1));
draw((0,3)--(2,3));
draw((2,3)--(1,4.73));
draw((1,4.73)--(0,3));
draw(circle((0,3), 1.44));
label("$C$",(-0.4,3.14),SE*labelscalefactor);
label("$A$",(2.1,3.1),SE*labelscalefactor);
label("$B$",(0.86,5.18),SE*labelscalefactor);
label("$D$",(-0.28,0.88),SE*labelscalefactor);
label("$E$",(2.1,0.8),SE*labelscalefactor);
/* dots and labels */
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]
2004 South East Mathematical Olympiad, 2
In $\triangle$ABC, points D, M lie on side BC and AB respectively, point P lies on segment AD. Line DM intersects segments BP, AC (extended part), PC (extended part) at E, F and N respectively. Show that if DE=DF, then DM=DN.
DMM Team Rounds, 2010
[b]p1.[/b] Find the smallest positive integer $N$ such that $N!$ is a multiple of $10^{2010}$.
[b]p2.[/b] An equilateral triangle $T$ is externally tangent to three mutually tangent unit circles, as shown in the diagram. Find the area of $T$.
[b]p3. [/b]The polynomial $p(x) = x^3 + ax^2 + bx + c$ has the property that the average of its roots, the product of its roots, and the sum of its coefficients are all equal. If $p(0) = 2$, find $b$.
[b]p4.[/b] A regular pentagon $P = A_1A_2A_3A_4A_5$ and a square $S = B_1B_2B_3B_4$ are both inscribed in the unit circle. For a given pentagon $P$ and square $S$, let $f(P, S)$ be the minimum length of the minor arcs AiBj , for $1 \le i \le 5$ and $1 \le j \le 4$. Find the maximum of $f(P, S)$ over all pairs of shapes.
[b]p5.[/b] Let $ a, b, c$ be three three-digit perfect squares that together contain each nonzero digit exactly once. Find the value of $a + b + c$.
[b]p6. [/b]There is a big circle $P$ of radius $2$. Two smaller circles $Q$ and $R$ are drawn tangent to the big circle $P$ and tangent to each other at the center of the big circle $P$. A fourth circle $S$ is drawn externally tangent to the smaller circles $Q$ and $R$ and internally tangent to the big circle $P$. Finally, a tiny fifth circle $T$ is drawn externally tangent to the $3$ smaller circles $Q, R, S$. What is the radius of the tiny circle $T$?
[b]p7.[/b] Let $P(x) = (1 +x)(1 +x^2)(1 +x^4)(1 +x^8)(...)$. This infinite product converges when $|x| < 1$.
Find $P\left( \frac{1}{2010}\right)$.
[b]p8.[/b] $P(x)$ is a polynomial of degree four with integer coefficients that satisfies $P(0) = 1$ and $P(\sqrt2 + \sqrt3) = 0$. Find $P(5)$.
[b]p9.[/b] Find all positive integers $n \ge 3$ such that both roots of the equation $$(n - 2)x^2 + (2n^2 - 13n + 38)x + 12n - 12 = 0$$ are integers.
[b]p10.[/b] Let $a, b, c, d, e, f$ be positive integers (not necessarily distinct) such that $$a^4 + b^4 + c^4 + d^4 + e^4 = f^4.$$ Find the largest positive integer $n$ such that $n$ is guaranteed to divide at least one of $a, b, c, d, e, f$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 India Regional Mathematical Olympiad, 5
Let $ABC$ be a triangle. Let $D, E$ be a points on the segment $BC$ such that $BD =DE = EC$. Let $F$ be the mid-point of $AC$. Let $BF$ intersect $AD$ in $P$ and $AE$ in $Q$ respectively. Determine $BP:PQ$.
2014 BMT Spring, 5
In a 100-dimensional hypercube, each edge has length $ 1$. The box contains $2^{100} + 1$ hyperspheres with the same radius $ r$. The center of one hypersphere is the center of the hypercube, and it touches all the other spheres. Each of the other hyperspheres is tangent to $100$ faces of the hypercube. Thus, the hyperspheres are tightly packed in the hypercube. Find $ r$.
2008 National Olympiad First Round, 13
Let $ABC$ be a triangle such that angle $C$ is obtuse. Let $D\in [AB]$ and $[DC]\perp [BC]$. If $m(\widehat{ABC})=\alpha$, $m(\widehat{BCA})=3\alpha$, and $|AC|-|AD|=10$, what is $|BD|$?
$
\textbf{(A)}\ 10
\qquad\textbf{(B)}\ 14
\qquad\textbf{(C)}\ 18
\qquad\textbf{(D)}\ 20
\qquad\textbf{(E)}\ 22
$
2013 Macedonia National Olympiad, 3
Acute angle triangle is given such that $ BC $ is the longest side. Let $ E $ and $ G $ be the intersection points from the altitude from $ A $ to $ BC $ with the circumscribed circle of triangle $ ABC $ and $ BC $ respectively. Let the center $ O $ of this circle is positioned on the perpendicular line from $ A $ to $ BE $. Let $ EM $ be perpendicular to $ AC $ and $ EF $ be perpendicular to $ AB $. Prove that the area of $ FBEG $ is greater than the area of $ MFE $.
2019 Brazil Team Selection Test, 2
Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.
2013 Iran MO (3rd Round), 3
Suppose line $\ell$ and four points $A,B,C,D$ lies on $\ell$. Suppose that circles $\omega_1 , \omega_2$ passes through $A,B$ and circles $\omega'_1 , \omega'_2$ passes through $C,D$. If $\omega_1 \perp \omega'_1$ and $\omega_2 \perp \omega'_2$ then prove that lines $O_1O'_2 , O_2O'_1 , \ell $ are concurrent where $O_1,O_2,O'_1,O'_2$ are center of $\omega_1 , \omega_2 , \omega'_1 , \omega'_2$.
2022 CHMMC Winter (2022-23), 4
Let $ABC$ be a triangle with $AB = 4$, $BC = 5$, $CA = 6$. Triangles $APB$ and $CQA$ are erected outside $ABC$ such that $AP=PB$, $\overline{AP}\perp \overline{PB}$ and $CQ=QA$, $\overline{CQ}\perp \overline{QA}$. Pick a point $X$ uniformly at random from segment $\overline{BC}$. What is the expected value of the area of triangle $PXQ$?
2007 AMC 12/AHSME, 19
Rhombus $ ABCD$, with a side length $ 6$, is rolled to form a cylinder of volume $ 6$ by taping $ \overline{AB}$ to $ \overline{DC}.$ What is $ \sin(\angle ABC)$?
$ \textbf{(A)}\ \frac {\pi}{9} \qquad \textbf{(B)}\ \frac {1}{2} \qquad \textbf{(C)}\ \frac {\pi}{6} \qquad \textbf{(D)}\ \frac {\pi}{4} \qquad \textbf{(E)}\ \frac {\sqrt3}{2}$
2024 All-Russian Olympiad Regional Round, 10.8
Let $ABCD$ be a quadrilateral such that $\angle A=\angle C=90^{\circ}$. If $A, D$ and the midpoints of $BA, BC$ are concyclic, show that the midpoints of $AD, DC$ and $B, C$ are concyclic.
Kyiv City MO Seniors 2003+ geometry, 2012.10.4
The triangle $ABC$ with $AB> AC$ is inscribed in a circle, the angle bisector of $\angle BAC$ intersects the side $BC$ of the triangle at the point $K$, and the circumscribed circle at the point $M$. The midline of $\Delta ABC$, which is parallel to the side $AB$, intersects $AM$ at the point $O$, the line $CO$ intersects the line $AB$ at the point $N$. Prove that a circle can be circumscribed around the quadrilateral $BNKM$.
(Nagel Igor)
2007 AMC 12/AHSME, 20
Corners are sliced off a unit cube so that the six faces each become regular octagons. What is the total volume of the removed tetrahedra?
$ \textbf{(A)}\ \frac {5\sqrt {2} \minus{} 7}{3}\qquad \textbf{(B)}\ \frac {10 \minus{} 7\sqrt {2}}{3}\qquad \textbf{(C)}\ \frac {3 \minus{} 2\sqrt {2}}{3}\qquad \textbf{(D)}\ \frac {8\sqrt {2} \minus{} 11}{3}\qquad \textbf{(E)}\ \frac {6 \minus{} 4\sqrt {2}}{3}$
2010 Belarus Team Selection Test, 5.2
Numbers $a, b, c$ are the length of the medians of some triangle. If $ab + bc + ac = 1$ prove that
a) $a^2b + b^2c + c^2a > \frac13$ b) $a^2b + b^2c + c^2a > \frac12$
(I. Bliznets)
2013 IMO Shortlist, G5
Let $ABCDEF$ be a convex hexagon with $AB=DE$, $BC=EF$, $CD=FA$, and $\angle A-\angle D = \angle C -\angle F = \angle E -\angle B$. Prove that the diagonals $AD$, $BE$, and $CF$ are concurrent.
Mid-Michigan MO, Grades 5-6, 2019
[b]p1.[/b] It takes $12$ months for Santa Claus to pack gifts. It would take $20$ months for his apprentice to do the job. If they work together, how long will it take for them to pack the gifts?
[b]p2.[/b] All passengers on a bus sit in pairs. Exactly $2/5$ of all men sit with women, exactly $2/3$ of all women sit with men. What part of passengers are men?
[b]p3.[/b] There are $100$ colored balls in a box. Every $10$-tuple of balls contains at least two balls of the same color. Show that there are at least $12$ balls of the same color in the box.
[b]p4.[/b] There are $81$ wheels in storage marked by their two types, say first and second type. Wheels of the same type weigh equally. Any wheel of the second type is much lighter than a wheel of the first type. It is known that exactly one wheel is marked incorrectly. Show that one can determine which wheel is incorrectly marked with four measurements.
[b]p5.[/b] Remove from the figure below the specified number of matches so that there are exactly $5$ squares of equal size left:
(a) $8$ matches
(b) $4$ matches
[img]https://cdn.artofproblemsolving.com/attachments/4/b/0c5a65f2d9b72fbea50df12e328c024a0c7884.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].