Found problems: 25757
1999 Harvard-MIT Mathematics Tournament, 9
What fraction of the Earth's volume lies above the $45$ degrees north parallel? You may assume the Earth is a perfect sphere. The volume in question is the smaller piece that we would get if the sphere were sliced into two pieces by a plane.
2004 Germany Team Selection Test, 1
Let $ABC$ be an acute triangle, and let $M$ and $N$ be two points on the line $AC$ such that the vectors $MN$ and $AC$ are identical. Let $X$ be the orthogonal projection of $M$ on $BC$, and let $Y$ be the orthogonal projection of $N$ on $AB$. Finally, let $H$ be the orthocenter of triangle $ABC$.
Show that the points $B$, $X$, $H$, $Y$ lie on one circle.
2015 Germany Team Selection Test, 3
Let $ABC$ be an acute triangle with $|AB| \neq |AC|$ and the midpoints of segments $[AB]$ and $[AC]$ be $D$ resp. $E$. The circumcircles of the triangles $BCD$ and $BCE$ intersect the circumcircle of triangle $ADE$ in $P$ resp. $Q$ with $P \neq D$ and $Q \neq E$.
Prove $|AP|=|AQ|$.
[i](Notation: $|\cdot|$ denotes the length of a segment and $[\cdot]$ denotes the line segment.)[/i]
2017 CMIMC Geometry, 9
Let $\triangle ABC$ be an acute triangle with circumcenter $O$, and let $Q\neq A$ denote the point on $\odot (ABC)$ for which $AQ\perp BC$. The circumcircle of $\triangle BOC$ intersects lines $AC$ and $AB$ for the second time at $D$ and $E$ respectively. Suppose that $AQ$, $BC$, and $DE$ are concurrent. If $OD=3$ and $OE=7$, compute $AQ$.
2020-21 IOQM India, 16
The sides $x$ and $y$ of a scalene triangle satisfy $x + \frac{2\Delta }{x}=y+ \frac{2\Delta }{y}$ , where $\Delta$ is the area of the triangle. If $x = 60, y = 63$, what is the length of the largest side of the triangle?
2011 Indonesia TST, 3
Circle $\omega$ is inscribed in quadrilateral $ABCD$ such that $AB$ and $CD$ are not parallel and
intersect at point $O.$ Circle $\omega_1$ touches the side $BC$ at $K$ and touches line $AB$ and $CD$ at
points which are located outside quadrilateral $ABCD;$ circle $\omega_2$ touches side $AD$ at $L$ and
touches line $AB$ and $CD$ at points which are located outside quadrilateral $ABCD.$ If $O,K,$
and $L$ are collinear$,$ then show that the midpoint of side $BC,AD,$ and the center of circle
$\omega$ are also collinear.
2019 Czech-Polish-Slovak Junior Match, 3
Let $ABCD$ be a convex quadrilateral with perpendicular diagonals, such that $\angle BAC = \angle ADB$, $\angle CBD = \angle DCA$, $AB = 15$, $CD = 8$. Show that $ABCD$ is cyclic and find the distance between its circumcenter and the intersection point of its diagonals.
1975 USAMO, 2
Let $ A,B,C,$ and $ D$ denote four points in space and $ AB$ the distance between $ A$ and $ B$, and so on. Show that \[ AC^2\plus{}BD^2\plus{}AD^2\plus{}BC^2 \ge AB^2\plus{}CD^2.\]
2010 Saudi Arabia Pre-TST, 3.3
Let $ABCDEFG$ be a regular heptagon. If $AC = m$ and $AD = n$, prove that $AB =\frac{mn}{m+n}$.
2015 Sharygin Geometry Olympiad, P8
Diagonals of an isosceles trapezoid $ABCD$ with bases $BC$ and $AD$ are perpendicular. Let $DE$ be the perpendicular from $D$ to $AB$, and let $CF$ be the perpendicular from $C$ to $DE$. Prove that angle $DBF$ is equal to half of angle $FCD$.
2009 Indonesia Juniors, day 1
p1. A quadratic equation has the natural roots $a$ and $ b$. Another quadratic equation has roots $ b$ and $c$ with $a\ne c$. If $a$, $ b$, and $c$ are prime numbers less than $15$, how many triplets $(a,b,c)$ that might meet these conditions are there (provided that the coefficient of the quadratic term is equal to $ 1$)?
p2. In Indonesia, was formerly known the "Archipelago Fraction''. The [i]Archipelago Fraction[/i] is a fraction $\frac{a}{b}$ such that $a$ and $ b$ are natural numbers with $a < b$. Find the sum of all Archipelago Fractions starting from a fraction with $b = 2$ to $b = 1000$.
p3. Look at the following picture. The letters $a, b, c, d$, and $e$ in the box will replaced with numbers from $1, 2, 3, 4, 5, 6, 7, 8$, or $9$, provided that $a,b, c, d$, and $e$ must be different. If it is known that $ae = bd$, how many arrangements are there?
[img]https://cdn.artofproblemsolving.com/attachments/f/2/d676a57553c1097a15a0774c3413b0b7abc45f.png[/img]
p4. Given a triangle $ABC$ with $A$ as the vertex and $BC$ as the base. Point $P$ lies on the side $CA$. From point $A$ a line parallel to $PB$ is drawn and intersects extension of the base at point $D$. Point $E$ lies on the base so that $CE : ED = 2 :3$. If $F$ is the midpoint between $E$ and $C$, and the area of triangle ABC is equal with $35$ cm$^2$, what is the area of triangle $PEF$?
p5. Each side of a cube is written as a natural number. At the vertex of each angle is given a value that is the product of three numbers on three sides that intersect at the vertex. If the sum of all the numbers at the points of the angle is equal to $1001$, find the sum of all the numbers written on the sides of the cube.
2016 India Regional Mathematical Olympiad, 4
Let $\triangle ABC$ be scalene, with $BC$ as the largest side. Let $D$ be the foot of the perpendicular from $A$ on side $BC$. Let points $K,L$ be chosen on the lines $AB$ and $AC$ respectively, such that $D$ is the midpoint of segment $KL$. Prove that the points $B,K,C,L$ are concyclic if and only if $\angle BAC=90^{\circ}$.
2014 Contests, 3
Is there a convex pentagon in which each diagonal is equal to a side?
2021 LMT Spring, B2
Find the greatest possible distance between any two points inside or along the perimeter of an equilateral triangle with side length $2$.
[i]Proposed by Alex Li[/i]
1997 All-Russian Olympiad, 4
A polygon can be divided into 100 rectangles, but not into 99. Prove that it cannot be divided into 100 triangles.
[i]A. Shapovalov[/i]
2008 AMC 12/AHSME, 15
On each side of a unit square, an equilateral triangle of side length 1 is constructed. On each new side of each equilateral triangle, another equilateral triangle of side length 1 is constructed. The interiors of the square and the 12 triangles have no points in common. Let $ R$ be the region formed by the union of the square and all the triangles, and $ S$ be the smallest convex polygon that contains $ R$. What is the area of the region that is inside $ S$ but outside $ R$?
$ \textbf{(A)} \; \frac{1}{4} \qquad \textbf{(B)} \; \frac{\sqrt{2}}{4} \qquad \textbf{(C)} \; 1 \qquad \textbf{(D)} \; \sqrt{3} \qquad \textbf{(E)} \; 2 \sqrt{3}$
2005 USAMTS Problems, 5
Given acute triangle $\triangle ABC$ in plane $P$, a point $Q$ in space is defined such that $\angle AQB = \angle BQC = \angle CQA = 90^\circ.$ Point $X$ is the point in plane $P$ such that $QX$ is perpendicular to plane $P$. Given $\angle ABC = 40^\circ$ and $\angle ACB = 75^\circ,$ find $\angle AXC.$
2006 Brazil National Olympiad, 5
Let $P$ be a convex $2006$-gon. The $1003$ diagonals connecting opposite vertices and the $1003$ lines connecting the midpoints of opposite sides are concurrent, that is, all $2006$ lines have a common point. Prove that the opposite sides of $P$ are parallel and congruent.
2019 Macedonia Junior BMO TST, 2
Circles $\omega_{1}$ and $\omega_{2}$ intersect at points $A$ and $B$. Let $t_{1}$ and $t_{2}$ be the tangents to $\omega_{1}$ and $\omega_{2}$, respectively, at point $A$. Let the second intersection of $\omega_{1}$ and $t_{2}$ be $C$, and let the second intersection of $\omega_{2}$ and $t_{1}$ be $D$. Points $P$ and $E$ lie on the ray $AB$, such that $B$ lies between $A$ and $P$, $P$ lies between $A$ and $E$, and $AE = 2 \cdot AP$. The circumcircle to $\bigtriangleup BCE$ intersects $t_{2}$ again at point $Q$, whereas the circumcircle to $\bigtriangleup BDE$ intersects $t_{1}$ again at point $R$. Prove that points $P$, $Q$, and $R$ are collinear.
2022 Durer Math Competition (First Round), 2
Determine all triangles that can be split into two congruent pieces by one cut. A cut consists of segments $P_1P_2$, $P_2P_3$, . . . , $P_{n-1}P_n$ where points $P_1, P_2, . . . , P_n$ are distinct, points $P_1$ and $P_n$ lie on the perimeter of the triangle and the rest of the points lie in the interior of the triangle such that the segments are disjoint except for the endpoints.
2017 Costa Rica - Final Round, 1
Let the regular hexagon $ABCDEF$ be inscribed in a circle with center $O$, $N$ be such a point Let $E-N-C$, $M$ a point such that $A- M-C$ and $R$ a point on the circumference, such that $D-N- R$. If $\angle EFR = 90^o$, $\frac{AM}{AC}=\frac{CN}{EC}$ and $AC=\sqrt3$, calculate $AM$.
Notation: $A-B-C$ means than points $A,B,C$ are collinear in that order i.e. $ B$ lies between $ A$ and $C$.
2000 Czech and Slovak Match, 2
Let ${ABC}$ be a triangle, ${k}$ its incircle and ${k_a,k_b,k_c}$ three circles orthogonal to ${k}$ passing through ${B}$ and ${C, A}$ and ${C}$ , and ${A}$ and ${B}$ respectively. The circles ${k_a,k_b}$ meet again in ${C'}$ ; in the same way we obtain the points ${B'}$ and ${A'}$ . Prove that the radius of the circumcircle of ${A'B'C'}$ is half the radius of ${k}$ .
2016 Bulgaria National Olympiad, Problem 5
Let $\triangle {ABC} $ be isosceles triangle with $AC=BC$ . The point $D$ lies on the extension of $AC$ beyond $C$ and is that $AC>CD$. The angular bisector of $ \angle BCD $ intersects $BD$ at point $N$ and let $M$ be the midpoint of $BD$. The tangent at $M$ to the circumcircle of triangle $AMD$ intersects the side $BC$ at point $P$. Prove that points $A,P,M$ and $N$ lie on a circle.
2007 National Olympiad First Round, 9
Let $|AB|=3$ and the length of the altitude from $C$ be $2$ in $\triangle ABC$. What is the maximum value of the product of the lengths of the other two altitudes?
$
\textbf{(A)}\ \frac{144}{25}
\qquad\textbf{(B)}\ 5
\qquad\textbf{(C)}\ 3\sqrt 2
\qquad\textbf{(D)}\ 6
\qquad\textbf{(E)}\ \text{None of the above}
$
1991 IMO, 1
Given a triangle $ \,ABC,\,$ let $ \,I\,$ be the center of its inscribed circle. The internal bisectors of the angles $ \,A,B,C\,$ meet the opposite sides in $ \,A^{\prime },B^{\prime },C^{\prime }\,$ respectively. Prove that
\[ \frac {1}{4} < \frac {AI\cdot BI\cdot CI}{AA^{\prime }\cdot BB^{\prime }\cdot CC^{\prime }} \leq \frac {8}{27}.
\]