Found problems: 25757
2018 Hanoi Open Mathematics Competitions, 4
How many triangles are there for which the perimeters are equal to $30$ cm and the lengths of sides are integers in centimeters?
A. $16$ B. $17$ C. $18$ D. $19$ E. $20$
2009 Moldova Team Selection Test, 1
Let $ m,n\in \mathbb{N}^*$. Find the least $ n$ for which exists $ m$, such that rectangle $ (3m \plus{} 2)\times(4m \plus{} 3)$ can be covered with $ \dfrac{n(n \plus{} 1)}{2}$ squares, among which exist $ n$ squares of length $ 1$, $ n \minus{} 1$ of length $ 2$, $ ...$, $ 1$ square of length $ n$. For the found value of $ n$ give the example of covering.
2024 ELMO Shortlist, G1
In convex quadrilateral $ABCD$, let diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $E$. Let the circumcircles of $ADE$ and $BCE$ intersect $\overline{AB}$ again at $P \neq A$ and $Q \neq B$, respectively. Let the circumcircle of $ACP$ intersect $\overline{AD}$ again at $R \neq A$, and let the circumcircle of $BDQ$ intersect $\overline{BC}$ again at $S \neq B$. Prove that $A$, $B$, $R$, and $S$ are concyclic.
[i]Tiger Zhang[/i]
2025 All-Russian Olympiad, 9.2
The diagonals of a convex quadrilateral \(ABCD\) intersect at point \(E\). The points of tangency of the circumcircles of triangles \(ABE\) and \(CDE\) with their common external tangents lie on a circle \(\omega\). The points of tangency of the circumcircles of triangles \(ADE\) and \(BCE\) with their common external tangents lie on a circle \(\gamma\). Prove that the centers of circles \(\omega\) and \(\gamma\) coincide.
2022 Caucasus Mathematical Olympiad, 4
Let $\omega$ is tangent to the sides of an acute angle with vertex $A$ at points $B$ and $C$. Let $D$ be an arbitrary point onn the major arc $BC$ of the circle $\omega$. Points $E$ and $F$ are chosen inside the angle $DAC$ so that quadrilaterals $ABDF$ and $ACED$ are inscribed and the points $A,E,F$ lie on the same straight line. Prove that lines $BE$ and $CF$ intersectat $\omega$.
2021 Belarusian National Olympiad, 9.6
The medians of a right triangle $ABC$ ($\angle C = 90^{\circ}$) intersect at $M$. Point $L$ lies on the $AC$ such that $\angle ABL=\angle CBL$. It turned out that $\angle BML = 90^{\circ}$.
Find the ration $AB : BC$.
2005 Sharygin Geometry Olympiad, 9.1
The quadrangle $ABCD$ is inscribed in a circle whose center $O$ lies inside it.
Prove that if $\angle BAO = \angle DAC$, then the diagonals of the quadrilateral are perpendicular.
2015 BMT Spring, Tie 2
The unit square $ABCD$ has $E$ as midpoint of $AD$ and a circle of radius $r$ tangent to $AB$, $BC$, and $CE$. Determine $r$.
1964 Kurschak Competition, 1
$ABC$ is an equilateral triangle. $D$ and$ D'$ are points on opposite sides of the plane $ABC$ such that the two tetrahedra $ABCD$ and $ABCD'$ are congruent (but not necessarily with the vertices in that order). If the polyhedron with the five vertices $A, B, C, D, D'$ is such that the angle between any two adjacent faces is the same, find $DD'/AB$ .
1970 IMO Longlists, 8
Consider a regular $2n$-gon and the $n$ diagonals of it that pass through its center. Let $P$ be a point of the inscribed circle and let $a_1, a_2, \ldots , a_n$ be the angles in which the diagonals mentioned are visible from the point $P$. Prove that
\[\sum_{i=1}^n \tan^2 a_i = 2n \frac{\cos^2 \frac{\pi}{2n}}{\sin^4 \frac{\pi}{2n}}.\]
2023 Israel TST, P3
Let $ABC$ be a fixed triangle. Three similar (by point order) isosceles trapezoids are built on its sides: $ABXY, BCZW, CAUV$, such that the sides of the triangle are bases of the respective trapezoids. The circumcircles of triangles $XZU, YWV$ meet at two points $P, Q$. Prove that the line $PQ$ passes through a fixed point independent of the choice of trapezoids.
2018 IMO Shortlist, G7
Let $O$ be the circumcentre, and $\Omega$ be the circumcircle of an acute-angled triangle $ABC$. Let $P$ be an arbitrary point on $\Omega$, distinct from $A$, $B$, $C$, and their antipodes in $\Omega$. Denote the circumcentres of the triangles $AOP$, $BOP$, and $COP$ by $O_A$, $O_B$, and $O_C$, respectively. The lines $\ell_A$, $\ell_B$, $\ell_C$ perpendicular to $BC$, $CA$, and $AB$ pass through $O_A$, $O_B$, and $O_C$, respectively. Prove that the circumcircle of triangle formed by $\ell_A$, $\ell_B$, and $\ell_C$ is tangent to the line $OP$.
2021 Iran MO (2nd Round), 4
$n$ points are given on a circle $\omega$. There is a circle with radius smaller than $\omega$ such that all these points lie inside or on the boundary of this circle. Prove that we can draw a diameter of $\omega$ with endpoints not belonging to the given points such that all the $n$ given points remain in one side of the diameter.
1953 AMC 12/AHSME, 33
The perimeter of an isosceles right triangle is $ 2p$. Its area is:
$ \textbf{(A)}\ (2\plus{}\sqrt{2})p \qquad\textbf{(B)}\ (2\minus{}\sqrt{2})p \qquad\textbf{(C)}\ (3\minus{}2\sqrt{2})p^2\\
\textbf{(D)}\ (1\minus{}2\sqrt{2})p^2 \qquad\textbf{(E)}\ (3\plus{}2\sqrt{2})p^2$
1998 Harvard-MIT Mathematics Tournament, 9
Let $T$ be the intersection of the common internal tangents of circles $C_1$, $C_2$ with centers $O_1$, $O_2$ respectively. Let $P$ be one of the points of tangency on $C_1$ and let line $\ell$ bisect angle $O_1TP$ . Label the intersection of $\ell$ with $C_1$ that is farthest from $T$, $R$, and label the intersection of $\ell$ with $C_2$ that is closest to $T$, $S$. If $C_1$ has radius $4$, $C_2$ has radius $6$, and $O_1O_2= 20$ , calculate $(TR)(TS) $.
[img]https://cdn.artofproblemsolving.com/attachments/3/c/284f17bb0dd73eab93132e41f27ecc121f496d.png[/img]
2006 Kurschak Competition, 1
Is there a set $S\subset\mathbb{R}^3$ of $2006$ points such that not all its points are coplanar, no three of the points are collinear, and for any $A,B\in S$ we can find points $C,D\in S$ for which $AB||CD$?
2025 Czech-Polish-Slovak Junior Match., 2
Find all triangles that can be divided into congruent right-angled isosceles triangles with side lengths $1, 1, \sqrt{2}$.
2016 Dutch IMO TST, 1
Let $\triangle ABC$ be a acute triangle. Let $H$ the foot of the C-altitude in $AB$ such that $AH=3BH$, let $M$ and $N$ the midpoints of $AB$ and $AC$ and let $P$ be a point such that $NP=NC$ and $CP=CB$ and $B$, $P$ are located on different sides of the line $AC$. Prove that $\measuredangle APM=\measuredangle PBA$.
2000 National Olympiad First Round, 29
One of the external common tangent lines of the two externally tangent circles with center $O_1$ and $O_2$ touches the circles at $B$ and $C$, respectively. Let $A$ be the common point of the circles. The line $BA$ meets the circle with center $O_2$ at $A$ and $D$. If $|BA|=5$ and $|AD|=4$, then what is $|CD|$?
$ \textbf{(A)}\ \sqrt{20}
\qquad\textbf{(B)}\ \sqrt{27}
\qquad\textbf{(C)}\ 6
\qquad\textbf{(D)}\ \frac{15}2
\qquad\textbf{(E)}\ 4\sqrt5
$
1983 IMO Longlists, 12
The number $0$ or $1$ is to be assigned to each of the $n$ vertices of a regular polygon. In how many different ways can this be done (if we consider two assignments that can be obtained one from the other through rotation in the plane of the polygon to be identical)?
2012 NIMO Problems, 5
In the diagram below, three squares are inscribed in right triangles. Their areas are $A$, $M$, and $N$, as indicated in the diagram. If $M = 5$ and $N = 12$, then $A$ can be expressed as $a + b\sqrt{c}$, where $a$, $b$, and $c$ are positive integers and $c$ is not divisible by the square of any prime. Compute $a + b + c$.
[asy]
size(250);
defaultpen (linewidth (0.7) + fontsize (10));
pair O = origin, A = (1, 1), B = (4/3, 1/3), C = (2/3, 5/3), P = (3/2, 0), Q = (0,3);
draw (P--O--Q--cycle^^(0, 5/3)--C--(2/3,1)^^(0,1)--A--(1,0)^^(1,1/3)--B--(4/3,0));
label("$A$", (.5,.5));
label("$M$", (7/6, 1/6));
label("$N$", (1/3, 4/3));[/asy]
[i]Proposed by Aaron Lin[/i]
2023 Mexican Girls' Contest, 8
There are $3$ sticks of each color between blue, red and green, such that we can make a triangle $T$ with sides sticks with all different colors. Dana makes $2$ two arrangements, she starts with $T$ and uses the other six sticks to extend the sides of $T$, as shown in the figure. This leads to two hexagons with vertex the ends of these six sticks. Prove that the area of the both hexagons it´s the same.
[asy]size(300);
pair A, B, C, D, M, N, P, Q, R, S, T, U, V, W, X, Y, Z, K;
A = (0, 0);
B = (1, 0);
C=(-0.5,2);
D=(-1.1063,4.4254);
M=(-1.7369,3.6492);
N=(3.5,0);
P=(-2.0616,0);
Q=(0.2425,-0.9701);
R=(1.6,-0.8);
S=(7.5164,0.8552);
T=(8.5064,0.8552);
U=(7.0214,2.8352);
V=(8.1167,-1.546);
W=(9.731,-0.7776);
X=(10.5474,0.8552);
Y=(6.7813,3.7956);
Z=(6.4274,3.6272);
K=(5.0414,0.8552);
draw(A--B, blue);
label("$b$", (A + B) / 2, dir(270), fontsize(10));
label("$g$", (B+C) / 2, dir(10), fontsize(10));
label("$r$", (A+C) / 2, dir(230), fontsize(10));
draw(B--C,green);
draw(D--C,green);
label("$g$", (C + D) / 2, dir(10), fontsize(10));
draw(C--A,red);
label("$r$", (C + M) / 2, dir(200), fontsize(10));
draw(B--N,green);
label("$g$", (B + N) / 2, dir(70), fontsize(10));
draw(A--P,red);
label("$r$", (A+P) / 2, dir(70), fontsize(10));
draw(A--Q,blue);
label("$b$", (A+Q) / 2, dir(540), fontsize(10));
draw(B--R,blue);
draw(C--M,red);
label("$b$", (B+R) / 2, dir(600), fontsize(10));
draw(Q--R--N--D--M--P--Q, dashed);
draw(Y--Z--K--V--W--X--Y, dashed);
draw(S--T,blue);
draw(U--T,green);
draw(U--S,red);
draw(T--W,red);
draw(T--X,red);
draw(S--K,green);
draw(S--V,green);
draw(Y--U,blue);
draw(U--Z,blue);
label("$b$", (Y+U) / 2, dir(0), fontsize(10));
label("$b$", (U+Z) / 2, dir(200), fontsize(10));
label("$b$", (S+T) / 2, dir(100), fontsize(10));
label("$r$", (S+U) / 2, dir(200), fontsize(10));
label("$r$", (T+W) / 2, dir(70), fontsize(10));
label("$r$", (T+X) / 2, dir(70), fontsize(10));
label("$g$", (U+T) / 2, dir(70), fontsize(10));
label("$g$", (S+K) / 2, dir(70), fontsize(10));
label("$g$", (V+S) / 2, dir(30), fontsize(10));
[/asy]
2010 HMNT, 7
$ABC$ is a right triangle with $\angle A = 30^o$ and circumcircle $O$. Circles $\omega_1$, $\omega_2$, and $\omega_3$ lie outside $ABC$ and are tangent to $O$ at $T_1$, $T_2$, and $T_3$ respectively and to $AB$, $BC$, and $CA$ at $S_1$, $S_2$, and $S_3$, respectively. Lines $T_1S_1$, $T_2S_2$, and $T_3S_3$ intersect $O$ again at $A'$, $B'$, and $C'$, respectively. What is the ratio of the area of $A'B'C'$ to the area of $ABC$?
2011 Sharygin Geometry Olympiad, 16
Given are triangle $ABC$ and line $\ell$. The reflections of $\ell$ in $AB$ and $AC$ meet at point $A_1$. Points $B_1, C_1$ are defined similarly. Prove that
a) lines $AA_1, BB_1, CC_1$ concur,
b) their common point lies on the circumcircle of $ABC$
c) two points constructed in this way for two perpendicular lines are opposite.
2024 ELMO Shortlist, G8
Let $ABC$ be a triangle, and let $D$ be a point on the internal angle bisector of $BAC$. Let $x$ be the ellipse with foci $B$ and $C$ passing through $D$, $y$ be the ellipse with foci $A$ and $C$ passing through $D$, and $z$ be the ellipse with foci $A$ and $B$ passing through $D$. Ellipses $x$ and $z$ intersect at distinct points $D$ and $E$, and ellipses $x$ and $y$ intersect at distinct points $D$ and $F$. Prove that $AD$ bisects angle $EAF$.
[i]Andrew Carratu[/i]