This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2017 China Northern MO, 5

Triangle \(ABC\) has \(AB > AC\) and \(\angle A = 60^\circ \). Let \(M\) be the midpoint of \(BC\), \(N\) be the point on segment \(AB\) such that \(\angle BNM = 30^\circ\). Let \(D,E\) be points on \(AB, AC\) respectively. Let \(F, G, H\) be the midpoints of \(BE, CD, DE\) respectively. Let \(O\) be the circumcenter of triangle \(FGH\). Prove that \(O\) lies on line \(MN\).

2004 APMO, 2

Let $O$ be the circumcenter and $H$ the orthocenter of an acute triangle $ABC$. Prove that the area of one of the triangles $AOH$, $BOH$ and $COH$ is equal to the sum of the areas of the other two.

IMSC 2024, 2

Tags: imsc , geometry
Let $ABC$ be an acute angled triangle and let $P, Q$ be points on $AB, AC$ respectively, such that $PQ$ is parallel to $BC$. Points $X, Y$ are given on line segments $BQ, CP$ respectively, such that $\angle AXP = \angle XCB$ and $\angle AYQ = \angle YBC$. Prove that $AX = AY$. [i]Proposed by Ervin Maci$\acute{c},$ Bosnia and Herzegovina[/i]

Estonia Open Senior - geometry, 2019.1.5

Polygon $A_0A_1...A_{n-1}$ satisfies the following: $\bullet$ $A_0A_1 \le A_1A_2 \le ...\le A_{n-1}A_0$ and $\bullet$ $\angle A_0A_1A_2 = \angle A_1A_2A_3 = ... = \angle A_{n-2}A_{n-1}A_0$ (all angles are internal angles). Prove that this polygon is regular.

1915 Eotvos Mathematical Competition, 3

Prove that a triangle inscribed in a parallelogram has at most half the area of the parallelogram.

2018 Yasinsky Geometry Olympiad, 1

Points $A, B$ and $C$ lie on the same line so that $CA = AB$. Square $ABDE$ and the equilateral triangle $CFA$, are constructed on the same side of line $CB$. Find the acute angle between straight lines $CE$ and $BF$.

2009 Polish MO Finals, 1

Tags: geometry
Each vertex of a convex hexagon is the center of a circle whose radius is equal to the shorter side of the hexagon that contains the vertex. Show that if the intersection of all six circles (including their boundaries) is not empty, then the hexagon is regular.

2017 Morocco TST-, 3

Let $ABC$ be a triangle with circumcircle $\Gamma$ and incenter $I$ and let $M$ be the midpoint of $\overline{BC}$. The points $D$, $E$, $F$ are selected on sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ such that $\overline{ID} \perp \overline{BC}$, $\overline{IE}\perp \overline{AI}$, and $\overline{IF}\perp \overline{AI}$. Suppose that the circumcircle of $\triangle AEF$ intersects $\Gamma$ at a point $X$ other than $A$. Prove that lines $XD$ and $AM$ meet on $\Gamma$. [i]Proposed by Evan Chen, Taiwan[/i]

II Soros Olympiad 1995 - 96 (Russia), 10.9

Trapezoid $ABCD$ with bases $AD$ and $BC$ is inscribed in a circle, $M$ is the intersection of of its diagonals. A straight line passing through $M$ perpendicular to the bases intersects $BC$ at point$ K$, and the circle at point $L$, where $L$ is the one of the two intersection points for which $M$ lies on the segment $KL$. It is known that $MK = a$, $LM = b$. Find the radius of the circle tangent to the segments $AM$, $BM$ and the circle circumscribed around $ABCD$.

2002 All-Russian Olympiad Regional Round, 9.6

Let $A'$ be a point on one of the sides of the trapezoid $ABCD$ such that line $AA'$ divides the area of the trapezoid in half. Points $B'$, $C'$, $D'$ are defined similarly. Prove that the intersection points of the diagonals of quadrilaterals $ABCD$ and $A'B'C'D'$ are symmetrical wrt the midpoint of midline of trapezoid $ABCD$.

2005 Hungary-Israel Binational, 3

There are seven rods erected at the vertices of a regular heptagonal area. The top of each rod is connected to the top of its second neighbor by a straight piece of wire so that, looking from above, one sees each wire crossing exactly two others. Is it possible to set the respective heights of the rods in such a way that no four tops of the rods are coplanar and each wire passes one of the crossings from above and the other one from below?

2003 Switzerland Team Selection Test, 2

In an acute-angled triangle $ABC, E$ and $F$ are the feet of the altitudes from $B$ and $C$, and $G$ and $H$ are the projections of $B$ and $C$ on $EF$, respectively. Prove that $HE = FG$.

Kyiv City MO Juniors 2003+ geometry, 2014.85

Given an equilateral $\Delta ABC$, in which ${{A} _ {1}}, {{B} _ {1}}, {{C} _ {1}}$ are the midpoint of the sides $ BC, \, \, AC, \, \, AB$ respectively. The line $l$ passes through the vertex $A$, we denote by $P, Q$ the projection of the points $B, C$ on the line $l$, respectively (the line $ l $ and the point $Q, \, \, A, \, \, P$ are located as shown in fig.). Denote by $T $ the intersection point of the lines ${{B} _ {1}} P$ and ${{C} _ {1}} Q$. Prove that the line ${{A} _ {1}} T$ is perpendicular to the line $l$. [img]https://cdn.artofproblemsolving.com/attachments/4/b/61f2f4ec9e6b290dfcd47e9351110bebd3bd43.png[/img] (Serdyuk Nazar)

2016 Regional Olympiad of Mexico Center Zone, 3

Let $ABC$ be a triangle with orthocenter $H$ and $\ell$ a line that passes through $H$, and is parallel to $BC$. Let $m$ and $n$ be the reflections of $\ell$ on the sides of $AB$ and $AC$, respectively, $m$ and $n$ are intersect at $P$. If $HP$ and $BC$ intersect at $Q$, prove that the parallel to $AH$ through $Q$ and $AP$ intersect at the circumcenter of the triangle $ABC$.

India EGMO 2021 TST, 3

In acute $\triangle ABC$ with circumcircle $\Gamma$ and incentre $I$, the incircle touches side $AB$ at $F$. The external angle bisector of $\angle ACB$ meets ray $AB$ at $L$. Point $K$ lies on the arc $CB$ of $\Gamma$ not containing $A$, such that $\angle CKI=\angle IKL$. Ray $KI$ meets $\Gamma$ again at $D\ne K$. Prove that $\angle ACF =\angle DCB$.

1956 Moscow Mathematical Olympiad, 345

* Prove that if the trihedral angles at each of the vertices of a triangular pyramid are formed by the identical planar angles, then all faces of this pyramid are equal.

1999 Harvard-MIT Mathematics Tournament, 11

Tags: geometry , hmmt , angle , circles
Circles $C_1$, $C_2$, $C_3$ have radius $ 1$ and centers $O, P, Q$ respectively. $C_1$ and $C_2$ intersect at $A$, $C_2$ and $C_3$ intersect at $B$, $C_3$ and $C_1$ intersect at $C$, in such a way that $\angle APB = 60^o$ , $\angle BQC = 36^o$ , and $\angle COA = 72^o$ . Find angle $\angle ABC$ (degrees).

2011 Saudi Arabia BMO TST, 3

Consider a triangle $ABC$. Let $A_1$ be the symmetric point of $A$ with respect to the line $BC$, $B_1$ the symmetric point of $B$ with respect to the line $CA$, and $C_1$ the symmetric point of $C$ with respect to the line $AB$. Determine the possible set of angles of triangle $ABC$ for which $A_1B_1C_1$ is equilateral.

2007 AMC 8, 23

Tags: geometry
What is the area of the shaded pinwheel shown in the $5\times 5$ grid? [asy] filldraw((2.5,2.5)--(0,1)--(1,1)--(1,0)--(2.5,2.5)--(4,0)--(4,1)--(5,1)--(2.5,2.5)--(5,4)--(4,4)--(4,5)--(2.5,2.5)--(1,5)--(1,4)--(0,4)--cycle, gray, black); int i; for(i=0; i<6; i=i+1) { draw((i,0)--(i,5)); draw((0,i)--(5,i)); }[/asy] $\textbf{(A)}\: 4\qquad \textbf{(B)}\: 6\qquad \textbf{(C)}\: 8\qquad \textbf{(D)}\: 10\qquad \textbf{(E)}\: 12$

2016 Irish Math Olympiad, 6

Triangle $ABC$ has sides $a = |BC| > b = |AC|$. The points $K$ and $H$ on the segment $BC$ satisfy $|CH| = (a + b)/3$ and $|CK| = (a - b)/3$. If $G$ is the centroid of triangle $ABC$, prove that $\angle KGH = 90^o$.

2017 Iran Team Selection Test, 4

There are $6$ points on the plane such that no three of them are collinear. It's known that between every $4$ points of them, there exists a point that it's power with respect to the circle passing through the other three points is a constant value $k$.(Power of a point in the interior of a circle has a negative value.) Prove that $k=0$ and all $6$ points lie on a circle. [i]Proposed by Morteza Saghafian[/I]

2010 Bosnia Herzegovina Team Selection Test, 2

Tags: ratio , geometry
Let $AB$ and $FD$ be chords in circle, which does not intersect and $P$ point on arc $AB$ which does not contain chord $FD$. Lines $PF$ and $PD$ intersect chord $AB$ in $Q$ and $R$. Prove that $\frac{AQ* RB}{QR}$ is constant, while point $P$ moves along the ray $AB$.

2020 HMNT (HMMO), 2

Tags: geometry
Let $T$ be a trapezoid with two right angles and side lengths $4, 4, 5,$ and $\sqrt{17}$. Two line segments are drawn, connecting the midpoints of opposite sides of $T$ and dividing $T$ into $4$ regions. If the difference between the areas of the largest and smallest of these regions is $d$, compute $240d$.

1999 Irish Math Olympiad, 5

Tags: geometry
A convex hexagon $ ABCDEF$ satisfies $ AB\equal{}BC, CD\equal{}DE, EF\equal{}FA$ and: $ \angle ABC\plus{}\angle CDE\plus{}\angle EFA \equal{} 360^{\circ}$. Prove that the perpendiculars from $ A,C$ and $ E$ to $ FB,BD$ and $ DF$ respectively are concurrent.

2012 Purple Comet Problems, 3

Tags: geometry
The diagram below shows a large square divided into nine congruent smaller squares. There are circles inscribed in five of the smaller squares. The total area covered by all the five circles is $20\pi$. Find the area of the large square. [asy] size(80); defaultpen(linewidth(0.6)); pair cent[] = {(0,0),(0,2),(1,1),(2,0),(2,2)}; for(int i=0;i<=3;++i) { draw((0,i)--(3,i)); } for(int j=0;j<=3;++j) { draw((j,0)--(j,3)); } for(int k=0;k<=4;++k) { draw(circle((cent[k].x+.5,cent[k].y+.5),.5)); } [/asy]