Found problems: 25757
2009 AIME Problems, 12
In right $ \triangle ABC$ with hypotenuse $ \overline{AB}$, $ AC \equal{} 12$, $ BC \equal{} 35$, and $ \overline{CD}$ is the altitude to $ \overline{AB}$. Let $ \omega$ be the circle having $ \overline{CD}$ as a diameter. Let $ I$ be a point outside $ \triangle ABC$ such that $ \overline{AI}$ and $ \overline{BI}$ are both tangent to circle $ \omega$. The ratio of the perimeter of $ \triangle ABI$ to the length $ AB$ can be expressed in the form $ \displaystyle\frac{m}{n}$, where $ m$ and $ n$ are relatively prime positive integers. Find $ m\plus{}n$.
2016 Iranian Geometry Olympiad, 5
Do there exist six points $X_1,X_2,Y_1, Y_2,Z_1,Z_2$ in the plane such that all of the triangles $X_iY_jZ_k$ are similar for $1\leq i, j, k \leq 2$?
Proposed by Morteza Saghafian
2008 Finnish National High School Mathematics Competition, 2
The incentre of the triangle $ABC$ is $I.$ The lines $AI, BI$ and $CI$ meet the circumcircle of the triangle $ABC$ also at points $D, E$ and $F,$ respectively.
Prove that $AD$ and $EF$ are perpendicular.
1998 Belarus Team Selection Test, 4
The altitudes through the vertices $ A,B,C$ of an acute-angled triangle $ ABC$ meet the opposite sides at $ D,E, F,$ respectively. The line through $ D$ parallel to $ EF$ meets the lines $ AC$ and $ AB$ at $ Q$ and $ R,$ respectively. The line $ EF$ meets $ BC$ at $ P.$ Prove that the circumcircle of the triangle $ PQR$ passes through the midpoint of $ BC.$
2006 Tournament of Towns, 5
Can a regular octahedron be inscribed in a cube in such a way that all vertices of the octahedron are on cube's edges? (4)
2009 Swedish Mathematical Competition, 5
A semicircular arc and a diameter $AB$ with a length of $2$ are given. Let $O$ be the midpoint of the diameter. On the radius perpendicular to the diameter, we select a point $P$ at the distance $d$ from the midpoint of the diameter $O$, $0 <d <1$. A line through $A$ and $P$ intersects the semicircle at point $C$. Through point $P$ we draw another line at right angle against $AC$ that intersects the semicircle at point $D$. Through point $C$ we draw a line $l_1$, parallel to $PD$ and then a line $l_2$, through $D$ parallel to $PC$. The lines $l_1$ and $l_2$ intersect at point $E$. Show that the distance between $O$ and $E$ is equal to $\sqrt{2- d^2}$
2015 India Regional MathematicaI Olympiad, 1
Let ABC be a triangle. Let B' and C' denote the reflection of B and C in the internal angle bisector of angle A. Show that the triangles ABC and AB'C' have the same incenter.
2022 MIG, 16
Let $P$ be a point on side $\overline{AB}$ of equilateral triangle $ABC$. If $BP = 6$ and $CP = 9$, what is the length of $AB$?
$\textbf{(A) }2\sqrt5\qquad\textbf{(B) }3+\sqrt6\qquad\textbf{(C) }3\sqrt5\qquad\textbf{(D) }3\sqrt6 + 3\qquad\textbf{(E) }6\sqrt2$
2017 India IMO Training Camp, 1
Let $ABC$ be an acute angled triangle with incenter $I$. Line perpendicular to $BI$ at $I$ meets $BA$ and $BC$ at points $P$ and $Q$ respectively. Let $D, E$ be the incenters of $\triangle BIA$ and $\triangle BIC$ respectively. Suppose $D,P,Q,E$ lie on a circle. Prove that $AB=BC$.
2014 Contests, 1
Let $ABC$ be an acute triangle, and let $X$ be a variable interior point on the minor arc $BC$ of its circumcircle. Let $P$ and $Q$ be the feet of the perpendiculars from $X$ to lines $CA$ and $CB$, respectively. Let $R$ be the intersection of line $PQ$ and the perpendicular from $B$ to $AC$. Let $\ell$ be the line through $P$ parallel to $XR$. Prove that as $X$ varies along minor arc $BC$, the line $\ell$ always passes through a fixed point. (Specifically: prove that there is a point $F$, determined by triangle $ABC$, such that no matter where $X$ is on arc $BC$, line $\ell$ passes through $F$.)
[i]Robert Simson et al.[/i]
1989 IMO Longlists, 21
Let $ ABC$ be an equilateral triangle with side length equal to $ N \in \mathbb{N}.$ Consider the set $ S$ of all points $ M$ inside the triangle $ ABC$ satisfying
\[ \overrightarrow{AM} \equal{} \frac{1}{N} \cdot \left(n \cdot \overrightarrow{AB} \plus{} m \cdot \overrightarrow{AC} \right)\]
with $ m, n$ integers, $ 0 \leq n \leq N,$ $ 0 \leq m \leq N$ and $ n \plus{} m \leq N.$
Every point of S is colored in one of the three colors blue, white, red such that
[b](i) [/b]no point of $ S \cap [AB]$ is coloured blue
[b](ii)[/b] no point of $ S \cap [AC]$ is coloured white
[b](iii)[/b] no point of $ S \cap [BC]$ is coloured red
Prove that there exists an equilateral triangle the following properties:
[b](1)[/b] the three vertices of the triangle are points of $ S$ and coloured blue, white and red, respectively.
[b](2)[/b] the length of the sides of the triangle is equal to 1.
[i]Variant:[/i] Same problem but with a regular tetrahedron and four different colors used.
1969 Leningrad Math Olympiad, grade 7
[b]7.1 / 6.1[/b] There are $8$ rooks on the chessboard such that no two of them they don't hit each other. Prove that the black squares contain an even number of rooks.
[b]7.2[/b] The sides of triangle $ABC$ are extended as shown in the figure. At this $AA' = 3 AB$,, $BB' = 5BC$ , $CC'= 8 CA$. How many times is the area of the triangle $ABC$ less than the area of the triangle $A'B'C' $?
[img]https://cdn.artofproblemsolving.com/attachments/9/f/06795292291cd234bf2469e8311f55897552f6.png[/img]
[url=https://artofproblemsolving.com/community/c893771h1860178p12579333]7.3[/url] Prove the equality $$\frac{2}{x^2-1}+\frac{4}{x^2-4} +\frac{6}{x^2-9}+...+\frac{20}{x^2-100}
=\frac{11}{(x-1)(x+10)}+\frac{11}{(x-2)(x+9)}+...+\frac{11}{(x-10)(x+1)}$$
[url=https://artofproblemsolving.com/community/c893771h1861966p12597273]7.4* / 8.4 *[/url] (asterisk problems in separate posts)
[b]7.5 [/b]. The collective farm consists of $4$ villages located in the peaks of square with side $10$ km. It has the means to conctruct 28 kilometers of roads . Can a collective farm build such a road system so that was it possible to get from any village to any other?
[b]7.6 / 6.6[/b] Two brilliant mathematicians were told in natural terms number and were told that these numbers differ by one. After that they take turns asking each other the same question: “Do you know my number?" Prove that sooner or later one of them will answer positively.
PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988085_1969_leningrad_math_olympiad]here[/url].
1983 IMO Longlists, 8
On the sides of the triangle $ABC$, three similar isosceles triangles $ABP \ (AP = PB)$, $AQC \ (AQ = QC)$, and $BRC \ (BR = RC)$ are constructed. The first two are constructed externally to the triangle $ABC$, but the third is placed in the same half-plane determined by the line $BC$ as the triangle $ABC$. Prove that $APRQ$ is a parallelogram.
2013 Baltic Way, 14
Circles $\alpha$ and $\beta$ of the same radius intersect in two points, one of which is $P$. Denote by $A$ and $B$, respectively, the points diametrically opposite to $P$ on each of $\alpha$ and $\beta$. A third circle of the same radius passes through $P$ and intersects $\alpha$ and $\beta$ in the points $X$ and $Y$ , respectively. Show that the line $XY$ is parallel to the line $AB$.
1999 IberoAmerican, 1
Find all the positive integers less than 1000 such that the cube of the sum of its digits is equal to the square of such integer.
1997 AMC 12/AHSME, 15
Medians $ BD$ and $ CE$ of triangle $ ABC$ are perpendicular, $ BD \equal{} 8$, and $ CE \equal{} 12$. The area of triangle $ ABC$ is
[asy]defaultpen(linewidth(.8pt));
dotfactor=4;
pair A = origin;
pair B = (1.25,1);
pair C = (2,0);
pair D = midpoint(A--C);
pair E = midpoint(A--B);
pair G = intersectionpoint(E--C,B--D);
dot(A);dot(B);dot(C);dot(D);dot(E);dot(G);
label("$A$",A,S);label("$B$",B,N);label("$C$",C,S);label("$D$",D,S);label("$E$",E,NW);label("$G$",G,NE);
draw(A--B--C--cycle);
draw(B--D);
draw(E--C);
draw(rightanglemark(C,G,D,3));[/asy]$ \textbf{(A)}\ 24\qquad \textbf{(B)}\ 32\qquad \textbf{(C)}\ 48\qquad \textbf{(D)}\ 64\qquad \textbf{(E)}\ 96$
2010 Stanford Mathematics Tournament, 2
Find the radius of a circle inscribed in a triangle with side lengths $4$, $5$, and $6$
2018 BMT Spring, 1
A cube has side length $5$. Let $S$ be its surface area and $V$ its volume. Find $\frac{S^3}{V^2}$ .
1941 Moscow Mathematical Olympiad, 074
A point $P$ lies outside a circle. Consider all possible lines drawn through $P$ so that they intersect the circle. Find the locus of the midpoints of the chords — segments the circle intercepts on these lines.
2017 CMIMC Geometry, 5
Two circles $\omega_1$ and $\omega_2$ are said to be $\textit{orthogonal}$ if they intersect each other at right angles. In other words, for any point $P$ lying on both $\omega_1$ and $\omega_2$, if $\ell_1$ is the line tangent to $\omega_1$ at $P$ and $\ell_2$ is the line tangent to $\omega_2$ at $P$, then $\ell_1\perp \ell_2$. (Two circles which do not intersect are not orthogonal.)
Let $\triangle ABC$ be a triangle with area $20$. Orthogonal circles $\omega_B$ and $\omega_C$ are drawn with $\omega_B$ centered at $B$ and $\omega_C$ centered at $C$. Points $T_B$ and $T_C$ are placed on $\omega_B$ and $\omega_C$ respectively such that $AT_B$ is tangent to $\omega_B$ and $AT_C$ is tangent to $\omega_C$. If $AT_B = 7$ and $AT_C = 11$, what is $\tan\angle BAC$?
2023 ISL, G1
Let $ABCDE$ be a convex pentagon such that $\angle ABC = \angle AED = 90^\circ$. Suppose that the midpoint of $CD$ is the circumcenter of triangle $ABE$. Let $O$ be the circumcenter of triangle $ACD$.
Prove that line $AO$ passes through the midpoint of segment $BE$.
2013 Uzbekistan National Olympiad, 4
Let circles $ \Gamma $ and $ \omega $ are circumcircle and incircle of the triangle $ABC$, the incircle touches sides $BC,CA,AB$ at the points $A_1,B_1,C_1$. Let $A_2$ and $B_2$ lies the lines $A_1I$ and $B_1I$ ($A_1$ and $A_2$ lies different sides from $I$, $B_1$ and $B_2$ lies different sides from $I$) such that $IA_2=IB_2=R$. Prove that :
(a) $AA_2=BB_2=IO$;
(b) The lines $AA_2$ and $BB_2$ intersect on the circle $ \Gamma ;$
2013 IFYM, Sozopol, 8
Let $P$ be a polygon that is convex and symmetric to some point $O$. Prove that for some parallelogram $R$ satisfying $P\subset R$ we have \[\frac{|R|}{|P|}\leq \sqrt 2\]
where $|R|$ and $|P|$ denote the area of the sets $R$ and $P$, respectively.
[i]Proposed by Witold Szczechla, Poland[/i]
2013 Federal Competition For Advanced Students, Part 2, 6
Consider a regular octahedron $ABCDEF$ with lower vertex $E$, upper vertex $F$, middle cross-section $ABCD$, midpoint $M$ and circumscribed sphere $k$. Further, let $X$ be an arbitrary point inside the face $ABF$. Let the line $EX$ intersect $k$ in $E$ and $Z$, and the plane $ABCD$ in $Y$.
Show that $\sphericalangle{EMZ}=\sphericalangle{EYF}$.
Ukraine Correspondence MO - geometry, 2013.7
An arbitrary point $D$ is marked on the hypotenuse $AB$ of a right triangle $ABC$. The circle circumscribed around the triangle $ACD$ intersects the line $BC$ at the point $E$ for the second time, and the circle circumscribed around the triangle $BCD$ intersects the line $AC$ for the second time at the point $F$. Prove that the line $EF$ passes through the point $D$.