Found problems: 25757
2016 Stars of Mathematics, 4
Let $ ABC $ be an acute triangle having $ AB<AC, I $ be its incenter, $ D,E,F $ be intersection of the incircle with $ BC, CA, $ respectively, $ AB, X $ be the middle of the arc $ BAC, $ which is an arc of the circumcicle of it, $ P $ be the projection of $ D $ on $ EF $ and $ Q $ be the projection of $ A $ on $ ID. $
[b]a)[/b] Show that $ IX $ and $ PQ $ are parallel.
[b]b)[/b] If the circle of diameter $ AI $ intersects the circumcircle of $ ABC $ at $ Y\neq A, $ prove that $ XQ $ intersects $ PI $ at $ Y. $
1948 Moscow Mathematical Olympiad, 153
* What is the radius of the largest possible circle inscribed into a cube with side $a$?
VMEO IV 2015, 12.2
Given a triangle $ABC$ inscribed in circle $(O)$ and let $P$ be a point on the interior angle bisector of $BAC$. $PB$, $PC$ cut $CA$, $AB$ at $E,F$ respectively. Let $EF$ meet $(O)$ at $M,N$. The line that is perpendicular to $PM$, $PN$ at $M,N$ respectively intersect $(O)$ at $S, T$ different from $M,N$. Prove that $ST \parallel BC$.
Gheorghe Țițeica 2024, P2
Consider equilateral triangle $ABC$ and $M,N\in (BC)$, $P,Q\in (CA)$, $R,S\in (AB)$ such that $MN=PQ=RS$ and $M\in (BN)$, $P\in(CQ)$, $R\in(AS)$. Prove that there exist three noncollinear points inside hexagon $MNPQRS$ with the same sum of distances to the sides of the hexagon if and only if triangles $ARQ$, $BMS$ and $CPN$ are congruent.
[i]Vasile Pop[/i]
2003 Singapore Team Selection Test, 2
Let $M$ be a point on the diameter $AB$ of a semicircle $\Gamma$. The perpendicular at $M$ meets the semicircle $\Gamma$ at $P$. A circle inside $\Gamma$. touches $\Gamma$. and is tangent to $PM$ at $Q$ and $AM$ at $R$. Prove that $P B = RB$.
2023 Chile TST Ibero., 4
Let \(ABC\) be a triangle with \(AB < AC\) and let \(\omega\) be its circumcircle. Let \(M\) denote the midpoint of side \(BC\) and \(N\) the midpoint of arc \(BC\) of \(\omega\) that contains \(A\). The circumcircle of triangle \(AMN\) intersects sides \(AB\) and \(AC\) at points \(P\) and \(Q\), respectively. Prove that \(BP = CQ\).
2015 Danube Mathematical Competition, 4
Let $ABCD$ be a rectangle with $AB\ge BC$ Point $M$ is located on the side $(AD)$, and the perpendicular bisector of $[MC]$ intersects the line $BC$ at the point $N$. Let ${Q} =MN\cup AB$ . Knowing that $\angle MQA= 2\cdot \angle BCQ $, show that the quadrilateral $ABCD$ is a square.
2014 Sharygin Geometry Olympiad, 4
A square is inscribed into a triangle (one side of the triangle contains two vertices and each of two remaining sides contains one vertex. Prove that the incenter of the triangle lies inside the square.
2018 CCA Math Bonanza, T4
$ABCD$ is a convex quadrilateral with $AB=36$, $CD=9$, $DA=39$, and $BD=15$. Given that $\angle{C}$ is right, compute the area of $ABCD$.
[i]2018 CCA Math Bonanza Team Round #4[/i]
2001 Saint Petersburg Mathematical Olympiad, 9.5
Points $A_1$, $B_1$, $C_1$ are midpoints of sides $BC$, $AC$, $AB$ of triangle $ABC$. On midlines $C_1B_1$ and $A_1B_1$ points $E$ and $F$ are chosen such that $BE$ is the angle bisector of $AEB_1$ and $BF$ is the angle bisector of $CFB_1$. Prove that bisectors of angles $ABC$ and $FBE$ coincide.
[I]Proposed by F. Baharev[/i]
2024 China Western Mathematical Olympiad, 3
$AB,AC$ are tangent to $\Omega$ at $B$ and $C$, respectively. $D,E,F$ lie on segments $BC,CA,AB$ such that $AF<AE$ and $\angle FDB= \angle EDC$. The circumcircle of $\triangle FEC$ intersects $\Omega$ at $G$ and $C$. Show that $ \angle AEF= \angle BGD$
Kyiv City MO Seniors Round2 2010+ geometry, 2018.10.3
In the acute triangle $ABC$ the orthocenter $H$ and the center of the circumscribed circle $O$ were noted. The line $AO$ intersects the side $BC$ at the point $D$. A perpendicular drawn to the side $BC$ at the point $D$ intersects the heights from the vertices $B$ and $C$ of the triangle $ABC$ at the points $X$ and $Y$ respectively. Prove that the center of the circumscribed circle $\Delta HXY$ is equidistant from the points $B$ and $C$.
(Danilo Hilko)
2010 Cuba MO, 8
Let $ABCDE$ be a convex pentagon that has $AB < BC$, $AE <ED$ and $AB + CD + EA = BC + DE$. Variable points $F,G$ and $H$ are taken that move on the segments $BC$, $CD$ and $OF$ respectively . $B'$ is defined as the projection of $B$ on $AF$, $C'$ as the projection of $C$ on $FG$, $D'$ as the projection of $D$ on $GH$ and $E'$ as the projection of $E$ onto $HA$. Prove that there is at least one quadrilateral $B'C'D'E'$ when $F,G$ and $H$ move on their sides, which is a parallelogram.
2009 Princeton University Math Competition, 2
A triangle has sides of lengths 5, 6, 7. What is 60 times the square of the radius of the inscribed circle?
2016 Brazil Team Selection Test, 3
Let $AB$ and $AC$ be two distinct rays not lying on the same line, and let $\omega$ be a circle with center $O$ that is tangent to ray $AC$ at $E$ and ray $AB$ at $F$. Let $R$ be a point on segment $EF$. The line through $O$ parallel to $EF$ intersects line $AB$ at $P$. Let $N$ be the intersection of lines $PR$ and $AC$, and let $M$ be the intersection of line $AB$ and the line through $R$ parallel to $AC$. Prove that line $MN$ is tangent to $\omega$.
[i]Warut Suksompong, Thailand[/i]
1994 IMO, 2
Let $ ABC$ be an isosceles triangle with $ AB \equal{} AC$. $ M$ is the midpoint of $ BC$ and $ O$ is the point on the line $ AM$ such that $ OB$ is perpendicular to $ AB$. $ Q$ is an arbitrary point on $ BC$ different from $ B$ and $ C$. $ E$ lies on the line $ AB$ and $ F$ lies on the line $ AC$ such that $ E, Q, F$ are distinct and collinear. Prove that $ OQ$ is perpendicular to $ EF$ if and only if $ QE \equal{} QF$.
1997 Croatia National Olympiad, Problem 2
Consider a circle $k$ and a point $K$ in the plane. For any two distinct points $P$ and $Q$ on $k$, denote by $k'$ the circle through $P,Q$ and $K$. The tangent to $k'$ at $K$ meets the line $PQ$ at point $M$. Describe the locus of the points $M$ when $P$ and $Q$ assume all possible positions.
2005 ITAMO, 3
Two circles $\gamma_1, \gamma_2$ in a plane, with centers $A$ and $B$ respectively, intersect at $C$ and $D$. Suppose that the circumcircle of $ABC$ intersects $\gamma_1$ in $E$ and $\gamma_2$ in $F$, where the arc $EF$ not containing $C$ lies outside $\gamma_1$ and $\gamma_2$. Prove that this arc $EF$ is bisected by the line $CD$.
2005 Estonia Team Selection Test, 6
Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$.
Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.
2012 CHMMC Fall, Mixer
[b]p1.[/b] Prove that $x = 2$ is the only real number satisfying $3^x + 4^x = 5^x$.
[b]p2.[/b] Show that $\sqrt{9 + 4\sqrt5} -\sqrt{9 - 4\sqrt5}$ is an integer.
[b]p3.[/b] Two players $A$ and $B$ play a game on a round table. Each time they take turn placing a round coin on the table. The coin has a uniform size, and this size is at least $10$ times smaller than the table size. They cannot place the coin on top of any part of other coins, and the whole coin must be on the table. If a player cannot place a coin, he loses. Suppose $A$ starts first. If both of them plan their moves wisely, there will be one person who will always win. Determine whether $A$ or $B$ will win, and then determine his winning strategy.
[b]p4.[/b] Suppose you are given $4$ pegs arranged in a square on a board. A “move” consists of picking up a peg, reflecting it through any other peg, and placing it down on the board. For how many integers $1 \le n \le 2013$ is it possible to arrange the $4$ pegs into a [i]larger [/i] square using exactly $n$ moves? Justify your answers.
[b]p5.[/b] Find smallest positive integer that has a remainder of $1$ when divided by $2$, a remainder of $2$ when divided by $3$, a remainder of $3$ when divided by $5$, and a remainder of $5$ when divided by $7$.
[b]p6.[/b] Find the value of $$\sum_{m|496,m>0} \frac{1}{m},$$
where $m|496$ means $496$ is divisible by $m$.
[b]p7.[/b] What is the value of
$${100 \choose 0}+{100 \choose 4}+{100 \choose 8}+ ... +{100 \choose 100}?$$
[b]p8.[/b] An $n$-term sequence $a_0, a_1, ...,a_n$ will be called [i]sweet [/i] if, for each $0 \le i \le n -1$, $a_i$ is the number of times that the number $i$ appears in the sequence. For example, $1, 2, 1,0$ is a sweet sequence with $4$ terms. Given that $a_0$, $a_1$, $...$, $a_{2013}$ is a sweet sequence, find the value of $a^2_0+ a^2_1+ ... + a^2_{2013}.$
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1982 IMO Longlists, 20
Consider a cube $C$ and two planes $\sigma, \tau$, which divide Euclidean space into several regions. Prove that the interior of at least one of these regions meets at least three faces of the cube.
2021-IMOC, G6
Let $\Omega$ be the circumcircle of triangle $ABC$. Suppose that $X$ is a point on the segment $AB$ with $XB=XC$, and the angle bisector of $\angle BAC$ intersects $BC$ and $\Omega$ at $D$, $M$, respectively. If $P$ is a point on $BC$ such that $AP$ is tangent to $\Omega$ and $Q$ is a point on $DX$ such that $CQ$ is tangent to $\Omega$, show that $AB$, $CM$, $PQ$ are concurrent.
Estonia Open Senior - geometry, 1994.2.2
The two sides $BC$ and $CD$ of an inscribed quadrangle $ABCD$ are of equal length. Prove that the area of this quadrangle is equal to $S =\frac12 \cdot AC^2 \cdot \sin \angle A$
1988 National High School Mathematics League, 2
In $\triangle ABC$, $P,Q,R$ divides the perimeter of $\triangle ABC$ into three equal parts. $P,Q\in AB$. Prove that $\frac{S_{\triangle PQR}}{S_{\triangle ABC}}>\frac{2}{9}$.
Oliforum Contest IV 2013, 2
Given an acute angled triangle $ABC$ with $M$ being the mid-point of $AB$ and $P$ and $Q$ are the feet of heights from $A$ to $BC$ and $B$ to $AC$ respectively. Show that if the line $AC$ is tangent to the circumcircle of $BMP$ then the line $BC$ is tangent to the circumcircle of $AMQ$.