Found problems: 25757
1976 IMO Longlists, 22
A regular pentagon $A_1A_2A_3A_4A_5$ with side length $s$ is given. At each point $A_i$, a sphere $K_i$ of radius $\frac{s}{2}$ is constructed. There are two spheres $K_1$ and $K_2$ each of radius $\frac{s}{2}$ touching all the five spheres $K_i.$ Decide whether $K_1$ and $K_2$ intersect each other, touch each other, or have no common points.
1981 All Soviet Union Mathematical Olympiad, 304
Two equal chess-boards ($8\times 8$) have the same centre, but one is rotated by $45$ degrees with respect to another. Find the total area of black fields intersection, if the fields have unit length sides.
2004 ITAMO, 2
Two parallel lines $r,s$ and two points $P \in r$ and $Q \in s$ are given in a plane. Consider all pairs of circles $(C_P, C_Q)$ in that plane such that $C_P$ touches $r$ at $P$ and $C_Q$ touches $s$ at $Q$ and which touch each other externally at some point $T$. Find the locus of $T$.
2022 AMC 8 -, 24
The figure below shows a polygon $ABCDEFGH$, consisting of rectangles and right triangles. When cut out and folded on the dotted lines, the polygon forms a triangular prism. Suppose that $AH = EF = 8$ and $GH = 14$. What is the volume of the prism?
[asy]
// djmathman diagram
unitsize(1cm);
defaultpen(linewidth(0.7)+fontsize(11));
real r = 2, s = 2.5, theta = 14;
pair G = (0,0), F = (r,0), C = (r,s), B = (0,s), M = (C+F)/2, I = M + s/2 * dir(-theta);
pair N = (B+G)/2, J = N + s/2 * dir(180+theta);
pair E = F + r * dir(- 45 - theta/2), D = I+E-F;
pair H = J + r * dir(135 + theta/2), A = B+H-J;
draw(A--B--C--I--D--E--F--G--J--H--cycle^^rightanglemark(F,I,C)^^rightanglemark(G,J,B));
draw(J--B--G^^C--F--I,linetype ("4 4"));
dot("$A$",A,N);
dot("$B$",B,1.2*N);
dot("$C$",C,N);
dot("$D$",D,dir(0));
dot("$E$",E,S);
dot("$F$",F,1.5*S);
dot("$G$",G,S);
dot("$H$",H,W);
dot("$I$",I,NE);
dot("$J$",J,1.5*S);
[/asy]
$\textbf{(A)} ~112\qquad\textbf{(B)} ~128\qquad\textbf{(C)} ~192\qquad\textbf{(D)} ~240\qquad\textbf{(E)} ~288\qquad$
2007 AIME Problems, 9
In right triangle $ABC$ with right angle $C$, $CA=30$ and $CB=16$. Its legs $\overline{CA}$ and $\overline{CB}$ are extended beyond $A$ and $B$. Points $O_{1}$ and $O_{2}$ lie in the exterior of the triangle and are the centers of two circles with equal radii. The circle with center $O_{1}$ is tangent to the hypotenuse and to the extension of leg CA, the circle with center $O_{2}$ is tangent to the hypotenuse and to the extension of leg CB, and the circles are externally tangent to each other. The length of the radius of either circle can be expressed as $p/q$, where $p$ and $q$ are relatively prime positive integers. Find $p+q$.
1971 IMO Longlists, 7
In a triangle $ABC$, let $H$ be its orthocenter, $O$ its circumcenter, and $R$ its circumradius. Prove that:
[b](a)[/b] $|OH| = R \sqrt{1-8 \cos \alpha \cdot \cos \beta \cdot \cos \gamma}$ where $\alpha, \beta, \gamma$ are angles of the triangle $ABC;$
[b](b)[/b] $O \equiv H$ if and only if $ABC$ is equilateral.
2018 Harvard-MIT Mathematics Tournament, 7
Triangle $ABC$ has sidelengths $AB=14,AC=13,$ and $BC=15.$ Point $D$ is chosen in the interior of $\overline{AB}$ and point $E$ is selected uniformly at random from $\overline{AD}.$ Point $F$ is then defined to be the intersection point of the perpendicular to $\overline{AB}$ at $E$ and the union of segments $\overline{AC}$ and $\overline{BC}.$ Suppose that $D$ is chosen such that the expected value of the length of $\overline{EF}$ is maximized. Find $AD.$
Champions Tournament Seniors - geometry, 2002.2
The point $P$ is outside the circle $\omega$ with center $O$. Lines $\ell_1$ and $\ell_2$ pass through a point $P$, $\ell_1$ touches the circle $\omega$ at the point $A$ and $\ell_2$ intersects $\omega$ at the points $B$ and $C$. Tangent to the circle $\omega$ at points $B$ and $C$ intersect at point $Q$. Let $K$ be the point of intersection of the lines $BC$ and $AQ$. Prove that $(OK) \perp (PQ)$.
2008 Czech-Polish-Slovak Match, 3
Find all triplets $(k, m, n)$ of positive integers having the following property: Square with side length $m$ can be divided into several rectangles of size $1\times k$ and a square with side length $n$.
2024 Malaysian APMO Camp Selection Test, 2
Let $k>1$. Fix a circle $\omega$ with center $O$ and radius $r$, and fix a point $A$ with $OA=kr$.
Let $AB$, $AC$ be tangents to $\omega$. Choose a variable point $P$ on the minor arc $BC$ in $\omega$. Lines $AB$ and $CP$ intersect at $X$ and lines $AC$ and $BP$ intersect at $Y$. The circles $(BPX)$ and $(CPY)$ meet at another point $Z$.
Prove that the line $PZ$ always passes through a fixed point except for one value of $k>1$, and determine this value.
[i]Proposed by Ivan Chan Kai Chin[/i]
2010 China Western Mathematical Olympiad, 6
$\Delta ABC$ is a right-angled triangle, $\angle C = 90^{\circ}$. Draw a circle centered at $B$ with radius $BC$. Let $D$ be a point on the side $AC$, and $DE$ is tangent to the circle at $E$. The line through $C$ perpendicular to $AB$ meets line $BE$ at $F$. Line $AF$ meets $DE$ at point $G$. The line through $A$ parallel to $BG$ meets $DE$ at $H$. Prove that $GE = GH$.
2001 Junior Balkan Team Selection Tests - Romania, 1
Let $ABCD$ be a rectangle. We consider the points $E\in CA,F\in AB,G\in BC$ such that $DC\perp CA,EF\perp AB$ and $EG\perp BC$. Solve in the set of rational numbers the equation $AC^x=EF^x+EG^x$.
2006 South East Mathematical Olympiad, 4
Given a circle with its perimeter equal to $n$( $n \in N^*$), the least positive integer $P_n$ which satisfies the following condition is called the “[i]number of the partitioned circle[/i]”: there are $P_n$ points ($A_1,A_2, \ldots ,A_{P_n}$) on the circle; For any integer $m$ ($1\le m\le n-1$), there always exist two points $A_i,A_j$ ($1\le i,j\le P_n$), such that the length of arc $A_iA_j$ is equal to $m$. Furthermore, all arcs between every two adjacent points $A_i,A_{i+1}$ ($1\le i\le P_n$, $A_{p_n+1}=A_1$) form a sequence $T_n=(a_1,a_2,,,a_{p_n})$ called the “[i]sequence of the partitioned circle[/i]”. For example when $n=13$, the number of the partitioned circle $P_{13}$=4, the sequence of the partitioned circle $T_{13}=(1,3,2,7)$ or $(1,2,6,4)$. Determine the values of $P_{21}$ and $P_{31}$, and find a possible solution of $T_{21}$ and $T_{31}$ respectively.
1987 Kurschak Competition, 2
Is there a set of points in space whose intersection with any plane is a finite but nonempty set of points?
2019 Romania National Olympiad, 3
Let $ABC$ be a triangle in which $\angle ABC = 45^o$ and $\angle BAC > 90^o$. Let $O$ be the midpoint of the side $[BC]$. Consider the point $M \in (AC)$ such that $\angle COM =\angle CAB$. Perpendicular from $M$ on $AC$ intersects line $AB$ at point $P$.
a) Find the measure of the angle $\angle BCP$.
b) Show that if $\angle BAC = 105^o$, then $PB = 2MO$.
1994 IMO Shortlist, 3
A circle $ C$ has two parallel tangents $ L'$ and$ L"$. A circle $ C'$ touches $ L'$ at $ A$ and $ C$ at $ X$. A circle $ C"$ touches $ L"$ at $ B$, $ C$ at $ Y$ and $ C'$ at $ Z$. The lines $ AY$ and $ BX$ meet at $ Q$. Show that $ Q$ is the circumcenter of $ XYZ$
1959 IMO Shortlist, 5
An arbitrary point $M$ is selected in the interior of the segment $AB$. The square $AMCD$ and $MBEF$ are constructed on the same side of $AB$, with segments $AM$ and $MB$ as their respective bases. The circles circumscribed about these squares, with centers $P$ and $Q$, intersect at $M$ and also at another point $N$. Let $N'$ denote the point of intersection of the straight lines $AF$ and $BC$.
a) Prove that $N$ and $N'$ coincide;
b) Prove that the straight lines $MN$ pass through a fixed point $S$ independent of the choice of $M$;
c) Find the locus of the midpoints of the segments $PQ$ as $M$ varies between $A$ and $B$.
2014 Indonesia MO, 2
Let $ABC$ be a triangle. Suppose $D$ is on $BC$ such that $AD$ bisects $\angle BAC$. Suppose $M$ is on $AB$ such that $\angle MDA = \angle ABC$, and $N$ is on $AC$ such that $\angle NDA = \angle ACB$. If $AD$ and $MN$ intersect on $P$, prove that $AD^3 = AB \cdot AC \cdot AP$.
2023 Romania Team Selection Test, P1
Let $ABC$ be a triangle with circumcenter $O$. Point $X$ is the intersection of the parallel line from $O$ to $AB$ with the perpendicular line to $AC$ from $C$. Let $Y$ be the point where the external bisector of $\angle BXC$ intersects with $AC$. Let $K$ be the projection of $X$ onto $BY$. Prove that the lines $AK, XO, BC$ have a common point.
2019 JHMT, 7
Regular hexagon $ABCDEF$ has side length $\alpha$. Line $\ell$ intersects $A$ and bisects $\overline{CD}$ (and the point of intersection is $M$), line $m$ intersects $C$ and $E$, and line $n$ intersects $B$ and $E$. Lines $n$ and $\ell$ intersect at a point $G$, and lines $m$ and $\ell$ intersect at a point $H$. $[\vartriangle CHM] : [\vartriangle GHE] : [\vartriangle ABG] = a : b : c$ where $[\vartriangle ABC]$ is the area of $\vartriangle ABC$. Find $a + b + c$.
2023 Canadian Mathematical Olympiad Qualification, 6
Given triangle $ABC$ with circumcircle $\Gamma$, let $D$, $E$, and $F$ be the midpoints of sides $BC$, $CA$, and $AB$, respectively, and let the lines $AD$, $BE$, and $CF$ intersect $\Gamma$ again at points $J$, $K$, and $L$, respectively. Show that the area of triangle $JKL$ is at least that of triangle $ABC$.
1999 USAMTS Problems, 4
We say a triangle in the coordinate plane is [i]integral[/i] if its three vertices have integer coordinates and if its three sides have integer lengths.
(a) Find an integral triangle with perimeter of $42$.
(b) Is there an integral triangle with perimeter of $43$?
2019 CMI B.Sc. Entrance Exam, 4
Let $ABCD$ be a parallelogram $.$ Let $O$ be a point in its interior such that $\angle AOB + \angle DOC = 180^{\circ} . $
Show that $,\angle ODC = \angle OBC . $
2024 Ukraine National Mathematical Olympiad, Problem 6
You are given a convex hexagon with parallel opposite sides. For each pair of opposite sides, a line is drawn parallel to these sides and equidistant from them. Prove that the three lines thus obtained intersect at one point if and only if the lengths of the opposite sides are equal.
[i]Proposed by Nazar Serdyuk[/i]
1998 Tuymaada Olympiad, 4
Given the tetrahedron $ABCD$, whose opposite edges are equal, that is, $AB=CD, AC=BD$ and $BC=AD$. Prove that exist exactly $6$ planes intersecting the triangular angles of the tetrahedron and dividing the total surface and volume of this tetrahedron in half.