This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2008 AMC 12/AHSME, 21

Two circles of radius 1 are to be constructed as follows. The center of circle $ A$ is chosen uniformly and at random from the line segment joining $ (0,0)$ and $ (2,0)$. The center of circle $ B$ is chosen uniformly and at random, and independently of the first choice, from the line segment joining $ (0,1)$ to $ (2,1)$. What is the probability that circles $ A$ and $ B$ intersect? $ \textbf{(A)} \; \frac{2\plus{}\sqrt{2}}{4} \qquad \textbf{(B)} \; \frac{3\sqrt{3}\plus{}2}{8} \qquad \textbf{(C)} \; \frac{2 \sqrt{2} \minus{} 1}{2} \qquad \textbf{(D)} \; \frac{2\plus{}\sqrt{3}}{4} \qquad \textbf{(E)} \; \frac{4 \sqrt{3} \minus{} 3}{4}$

2010 Contests, 1

Let $ ABC$ be a triangle with circum-circle $ \Gamma$. Let $ M$ be a point in the interior of triangle $ ABC$ which is also on the bisector of $ \angle A$. Let $ AM, BM, CM$ meet $ \Gamma$ in $ A_{1}, B_{1}, C_{1}$ respectively. Suppose $ P$ is the point of intersection of $ A_{1}C_{1}$ with $ AB$; and $ Q$ is the point of intersection of $ A_{1}B_{1}$ with $ AC$. Prove that $ PQ$ is parallel to $ BC$.

Kvant 2023, M2747

In the tetrahedron $ABCD,$ on the continuation of the edges $AB, AC$ and $AD$, three points were marked for point $A{},$ located from $A{}$ at a distance equal to the semi-perimeter of the triangle $BCD.$ Similarly, we marked three points corresponding to vertices $B, C$ and $D.$ Prove that if there is a sphere touching all the edges of the tetrahedron $ABCD$, then the marked 12 points lie on the same sphere. [i]Proposed by V. Alexandrov[/i]

2009 Germany Team Selection Test, 2

Let triangle $ABC$ be perpendicular at $A.$ Let $M$ be the midpoint of segment $\overline{BC}.$ Point $D$ lies on side $\overline{AC}$ and satisfies $|AD|=|AM|.$ Let $P \neq C$ be the intersection of the circumcircle of triangles $AMC$ and $BDC.$ Prove that $CP$ bisects the angle at $C$ of triangle $ABC.$

2011 Greece National Olympiad, 4

We consider an acute angled triangle $ABC$ (with $AB<AC$) and its circumcircle $c(O,R) $(with center $O$ and semidiametre $R$).The altitude $AD$ cuts the circumcircle at the point $E$ ,while the perpedicular bisector $(m)$ of the segment $AB$,cuts $AD$ at the point $L$.$BL$ cuts $AC$ at the point $M$ and the circumcircle $c(O,R)$ at the point $N$.Finally $EN$ cuts the perpedicular bisector $(m)$ at the point $Z$.Prove that: \[ MZ \perp BC \iff \left(CA=CB \;\; \text{or} \;\; Z\equiv O \right) \]

1998 All-Russian Olympiad Regional Round, 11.7

Given two regular tetrahedrons with edges of length $\sqrt2$, transforming into one another with central symmetry. Let $\Phi$ be the set the midpoints of segments whose ends belong to different tetrahedrons. Find the volume of the figure $\Phi$.

2013 India Regional Mathematical Olympiad, 5

Let $ABC$ be a triangle with $\angle A=90^{\circ}$ and $AB=AC$. Let $D$ and $E$ be points on the segment $BC$ such that $BD:DE:EC = 1:2:\sqrt{3}$. Prove that $\angle DAE= 45^{\circ}$

2007 Tournament Of Towns, 6

In the quadrilateral $ABCD$, $AB = BC = CD$ and $\angle BMC = 90^\circ$, where $M$ is the midpoint of $AD$. Determine the acute angle between the lines $AC$ and $BD$.

1974 Bundeswettbewerb Mathematik, 2

Tags: area , polygon , square , geometry
Seven polygons of area $1$ lie in the interior of a square with side length $2$. Show that there are two of these polygons whose intersection has an area of at least $1\slash 7.$

Novosibirsk Oral Geo Oly IX, 2021.2

The robot crawls the meter in a straight line, puts a flag on and turns by an angle $a <180^o$ clockwise. After that, everything is repeated. Prove that all flags are on the same circle.

2018 Bulgaria National Olympiad, 2.

Let $ABCD$ be a cyclic quadrilateral. Let $H_{1}$ be the orthocentre of triangle $ABC$. Point $A_{1}$ is the image of $A$ after reflection about $BH_{1}$. Point $B_{1}$ is the image of of $B$ after reflection about $AH_{1}$. Let $O_{1}$ be the circumcentre of $(A_{1}B_{1}H_{1})$. Let $H_{2}$ be the orthocentre of triangle $ABD$. Point $A_{2}$ is the image of $A$ after reflection about $BH_{2}$. Point $B_{2}$ is the image of of $B$ after reflection about $AH_{2}$. Let $O_{2}$ be the circumcentre of $(A_{2}B_{2}H_{2})$. Lets denote by $\ell_{AB}$ be the line through $O_{1}$ and $O_{2}$. $\ell_{AD}$ ,$\ell_{BC}$ ,$\ell_{CD}$ are defined analogously. Let $M=\ell_{AB} \cap \ell_{BC}$, $N=\ell_{BC} \cap \ell_{CD}$, $P=\ell_{CD} \cap \ell_{AD}$,$Q=\ell_{AD} \cap \ell_{AB}$. Prove that $MNPQ$ is cyclic.

2009 Stanford Mathematics Tournament, 6

Tags: geometry
Rhombus $ABCD$ has side length $ 1$. The size of $\angle A$ (in degrees) is randomly selected from all real numbers between $0$ and $90$. Find the expected value of the area of $ABCD$.

2008 Sharygin Geometry Olympiad, 4

(D.Shnol, 8--9) The bisectors of two angles in a cyclic quadrilateral are parallel. Prove that the sum of squares of some two sides in the quadrilateral equals the sum of squares of two remaining sides.

2005 Czech-Polish-Slovak Match, 2

A convex quadrilateral $ABCD$ is inscribed in a circle with center $O$ and circumscribed to a circle with center $I$. Its diagonals meet at $P$. Prove that points $O, I$ and $P$ lie on a line.

2015 All-Russian Olympiad, 7

An acute-angled $ABC \ (AB<AC)$ is inscribed into a circle $\omega$. Let $M$ be the centroid of $ABC$, and let $AH$ be an altitude of this triangle. A ray $MH$ meets $\omega$ at $A'$. Prove that the circumcircle of the triangle $A'HB$ is tangent to $AB$. [i](A.I. Golovanov , A.Yakubov)[/i]

1968 Dutch Mathematical Olympiad, 5

A square of side $n$ ($n$ natural) is divided into $n^2$ squares of side $1$. Each pair of "horizontal" boundary lines and each pair of "vertical" boundary lines enclose a rectangle (a square is also considered a rectangle). A rectangle has a length and a width; the width is less than or equal to the length. (a) Prove that there are $8$ rectangles of width $n - 1$. (b) Determine the number of rectangles with width $n -k$ ($0\le k \le n -1,k$ integer). (c) Determine a formula for $1^3 + 2^3 +...+ n^3$.

2010 Princeton University Math Competition, 5

In a rectangular plot of land, a man walks in a very peculiar fashion. Labeling the corners $ABCD$, he starts at $A$ and walks to $C$. Then, he walks to the midpoint of side $AD$, say $A_1$. Then, he walks to the midpoint of side $CD$ say $C_1$, and then the midpoint of $A_1D$ which is $A_2$. He continues in this fashion, indefinitely. The total length of his path if $AB=5$ and $BC=12$ is of the form $a + b\sqrt{c}$. Find $\displaystyle\frac{abc}{4}$.

1978 Bulgaria National Olympiad, Problem 6

The base of the pyramid with vertex $S$ is a pentagon $ABCDE$ for which $BC>DE$ and $AB>CD$. If $AS$ is the longest edge of the pyramid prove that $BS>CS$. [i]Jordan Tabov[/i]

2021-IMOC, G5

The incircle of a cyclic quadrilateral $ABCD$ tangents the four sides at $E$, $F$, $G$, $H$ in counterclockwise order. Let $I$ be the incenter and $O$ be the circumcenter of $ABCD$. Show that the line connecting the centers of $\odot(OEG)$ and $\odot(OFH)$ is perpendicular to $OI$.

2013 Greece Junior Math Olympiad, 2

Tags: geometry
Let $ABC$ be an acute angled triangle with $AB<AC$. Let $M$ be the midpoint of side $BC$. On side $AB$, consider a point $D$ such that, if segment $CD$ intersects median $AM$ at point $E$, then $AD=DE$. Prove that $AB=CE$.

1995 Nordic, 1

Let $AB$ be a diameter of a circle with centre $O$. We choose a point $C$ on the circumference of the circle such that $OC$ and $AB$ are perpendicular to each other. Let $P$ be an arbitrary point on the (smaller) arc $BC$ and let the lines $CP$ and $AB$ meet at $Q$. We choose $R$ on $AP$ so that $RQ$ and $AB$ are perpendicular to each other. Show that $BQ =QR$.

2009 Iran MO (3rd Round), 5

A ball is placed on a plane and a point on the ball is marked. Our goal is to roll the ball on a polygon in the plane in a way that it comes back to where it started and the marked point comes to the top of it. Note that We are not allowed to rotate without moving, but only rolling. Prove that it is possible. Time allowed for this problem was 90 minutes.

1998 Spain Mathematical Olympiad, 1

A unit square $ABCD$ with centre $O$ is rotated about $O$ by an angle $\alpha$. Compute the common area of the two squares.

2013 AMC 12/AHSME, 24

Three distinct segments are chosen at random among the segments whose end-points are the vertices of a regular 12-gon. What is the probability that the lengths of these three segments are the three side lengths of a triangle with positive area? $ \textbf{(A)} \ \frac{553}{715} \qquad \textbf{(B)} \ \frac{443}{572} \qquad \textbf{(C)} \ \frac{111}{143} \qquad \textbf{(D)} \ \frac{81}{104} \qquad \textbf{(E)} \ \frac{223}{286}$

2011 Mongolia Team Selection Test, 2

Let $ABC$ be a scalene triangle. The inscribed circle of $ABC$ touches the sides $BC$, $CA$, and $AB$ at the points $A_1$, $B_1$, $C_1$ respectively. Let $I$ be the incenter, $O$ be the circumcenter, and lines $OI$ and $BC$ meet at point $D$. The perpendicular line from $A_1$ to $B_1 C_1$ intersects $AD$ at point $E$. Prove that $B_1 C_1$ passes through the midpoint of $EA_1$.