This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2012 Indonesia TST, 3

The [i]cross[/i] of a convex $n$-gon is the quadratic mean of the lengths between the possible pairs of vertices. For example, the cross of a $3 \times 4$ rectangle is $\sqrt{ \dfrac{3^2 + 3^2 + 4^2 + 4^2 + 5^2 + 5^2}{6} } = \dfrac{5}{3} \sqrt{6}$. Suppose $S$ is a dodecagon ($12$-gon) inscribed in a unit circle. Find the greatest possible cross of $S$.

2014 Chile TST Ibero, 2

Tags: geometry
Let $\triangle ABC$ be a triangle and points $P, Q, R$ on the sides $AB, BC,$ and $CA$ respectively, such that: \[ \frac{AP}{AB} = \frac{BQ}{BC} = \frac{CR}{CA} = \frac{1}{n} \] for $n \in \mathbb{N}$. The segments $AQ$ and $CP$ intersect at $D$, the segments $BR$ and $AQ$ intersect at $E$, and the segments $BR$ and $CP$ intersect at $F$. Compute the ratio: \[ \frac{\text{Area}(\triangle ABC)}{\text{Area}(\triangle DEF)}. \]

2020 AMC 12/AHSME, 18

Quadrilateral $ABCD$ satisfies $\angle ABC = \angle ACD = 90^{\circ}, AC = 20$, and $CD = 30$. Diagonals $\overline{AC}$ and $\overline{BD}$ intersect at point $E$, and $AE = 5$. What is the area of quadrilateral $ABCD$? $\textbf{(A) } 330 \qquad\textbf{(B) } 340 \qquad\textbf{(C) } 350 \qquad\textbf{(D) } 360 \qquad\textbf{(E) } 370$

2016 Harvard-MIT Mathematics Tournament, 3

Let $V$ be a rectangular prism with integer side lengths. The largest face has area $240$ and the smallest face has area $48$. A third face has area $x$, where $x$ is not equal to $48$ or $240$. What is the sum of all possible values of $x$?

1988 IberoAmerican, 3

Prove that among all possible triangles whose vertices are $3,5$ and $7$ apart from a given point $P$, the ones with the largest perimeter have $P$ as incentre.

2020 Princeton University Math Competition, A6/B8

Tags: geometry
Triangle $ABC$ has side lengths $13$, $14$, and $15$. Let $E$ be the ellipse that encloses the smallest area which passes through $A, B$, and $C$. The area of $E$ is of the form $\frac{a \sqrt{b}\pi}{c}$ , where $a$ and $c$ are coprime and $b$ has no square factors. Find $a + b + c$.

2006 Sharygin Geometry Olympiad, 21

On the sides $AB, BC, CA$ of triangle $ABC$, points $C', A', B'$ are taken. Prove that for the areas of the corresponding triangles, the inequality holds: $$S_{ABC}S^2_{A'B'C'}\ge 4S_{AB'C'}S_{BC'A'}S_{CA'B'}$$ and equality is achieved if and only if the lines $AA', BB', CC'$ intersect at one point.

2016 Singapore Senior Math Olympiad, 1

Let $\triangle ABC$ be a triangle with $AB < AC$. Let the angle bisector of $\angle BAC$ meet $BC$ at $D$ , and let $M$ be the midpoint of $BC$ . Let $P$ be the foot of the perpendicular from $B$ to $AD$ . $Q$ the intersection of $BP$ and $AM$ . Show that : $(DQ) // (AB) $ .

1964 Spain Mathematical Olympiad, 8

Tags: geometry
The points $A$ and $B$ lie on a horizontal line over a vertical plane. We consider the semicircumference passing through $A$ and $B$ that lies under the horizontal line. A segment of length $a$, with the same diameter that the semicircumference, moves in a way that always contains the point $A$ and one of its extremes lies always on the semicircumference. Determine the value of the cosine of the angle between this segment and the horizontal line that makes the medium point of the segment to be as down as possible.

2025 Kosovo National Mathematical Olympiad`, P2

Let $h_a$, $h_b$ and $h_c$ be the altitudes of a triangle $\triangle ABC$ ejected from the vertices $A$,$B$ and $C$, respectively. Similarly, let $h_x$, $h_y$ and $h_z$ be the altitudes of an another triangle $\triangle XYZ$. Show that if $$h_a : h_b : h_c = h_x : h_y : h_z, $$ then the triangles $\triangle ABC$ and $\triangle XYZ$ are similar.

2011 Croatia Team Selection Test, 3

Triangle $ABC$ is given with its centroid $G$ and cicumcentre $O$ is such that $GO$ is perpendicular to $AG$. Let $A'$ be the second intersection of $AG$ with circumcircle of triangle $ABC$. Let $D$ be the intersection of lines $CA'$ and $AB$ and $E$ the intersection of lines $BA'$ and $AC$. Prove that the circumcentre of triangle $ADE$ is on the circumcircle of triangle $ABC$.

2014 Online Math Open Problems, 14

Let $ABC$ be a triangle with incenter $I$ and $AB = 1400$, $AC = 1800$, $BC = 2014$. The circle centered at $I$ passing through $A$ intersects line $BC$ at two points $X$ and $Y$. Compute the length $XY$. [i]Proposed by Evan Chen[/i]

2017 India PRMO, 24

Tags: geometry
Let $P$ be an interior point of a triangle $ABC$ whose sidelengths are 26, 65, 78. The line through $P$ parallel to $BC$ meets $AB$ in $K$ and $AC$ in $L$. The line through $P$ parallel to $CA$ meets $BC$ in $M$ and $BA$ in $N$. The line through $P$ parallel to $AB$ meets $CA$ in $S$ and $CB$ in $T$. If $KL,MN,ST$ are of equal lengths, find this common length.

Estonia Open Junior - geometry, 2020.2.5

The circle $\omega_2$ passing through the center $O$ of the circle $\omega_1$, is tangent to the circle $\omega_2$ at the point $A$. On the circle $\omega_2$, the point $C$ is taken so that the ray $AC$ intersects the circle $\omega_1$ for second time at point $D$, the ray $OC$ intersects the circle $\omega_1$ at point $E$ and the lines $DE$ and $AO$ are parallel. Find the size of the angle $DAE$.

2008 Mathcenter Contest, 1

In a triangle $ABC$, the angle bisector at $A,B,C$ meet the opposite sides at $A_1,B_1,C_1$, respectively. Prove that if the quadrilateral $BA_1B_1C_1$ is cyclic, then $$\frac{AC}{AB+BC}=\frac{AB}{AC+CB}+\frac{BC}{BA+AC}.$$

2021 Israel TST, 1

Let $ABCDEFGHIJ$ be a regular $10$-gon. Let $T$ be a point inside the $10$-gon, such that the $DTE$ is isosceles: $DT = ET$ , and its angle at the apex is $72^\circ$. Prove that there exists a point $S$ such that $FTS$ and $HIS$ are both isosceles, and for both of them the angle at the apex is $72^\circ$.

2008 Germany Team Selection Test, 3

Denote by $ M$ midpoint of side $ BC$ in an isosceles triangle $ \triangle ABC$ with $ AC = AB$. Take a point $ X$ on a smaller arc $ \overarc{MA}$ of circumcircle of triangle $ \triangle ABM$. Denote by $ T$ point inside of angle $ BMA$ such that $ \angle TMX = 90$ and $ TX = BX$. Prove that $ \angle MTB - \angle CTM$ does not depend on choice of $ X$. [i]Author: Farzan Barekat, Canada[/i]

2009 District Round (Round II), 2

in a right-angled triangle $ABC$ with $\angle C=90$,$a,b,c$ are the corresponding sides.Circles $K.L$ have their centers on $a,b$ and are tangent to $b,c$;$a,c$ respectively,with radii $r,t$.find the greatest real number $p$ such that the inequality $\frac{1}{r}+\frac{1}{t}\ge p(\frac{1}{a}+\frac{1}{b})$ always holds.

2007 Princeton University Math Competition, 2

Tags: geometry
$A, B, C$, and $D$ are all on a circle, and $ABCD$ is a convex quadrilateral. If $AB = 13$, $BC = 13$, $CD = 37$, and $AD = 47$, what is the area of $ABCD$?

2012 Lusophon Mathematical Olympiad, 6

A quadrilateral $ABCD$ is inscribed in a circle of center $O$. It is known that the diagonals $AC$ and $BD$ are perpendicular. On each side we build semicircles, externally, as shown in the figure. a) Show that the triangles $AOB$ and $COD$ have the equal areas. b) If $AC=8$ cm and $BD= 6$ cm, determine the area of the shaded region.

2007 Harvard-MIT Mathematics Tournament, 16

Tags: geometry
Let $ABC$ be a triangle with $AB=7$, $BC=9$, and $CA=4$. Let $D$ be the point such that $AB\parallel CD$ and $CA\parallel BD$. Let $R$ be a point within triangle $BCD$. Lines $\ell$ and $m$ going through $R$ are parallel to $CA$ and $AB$ respectively. Line $\ell$ meets $AB$ and $BC$ at $P$ and $P^\prime$ respectively, and $m$ meets $CA$ and $BC$ at $Q$ and $Q^\prime$ respectively. If $S$ denotes the largest possible sum of the areas of triangle $BPP^\prime$, $RP^\prime Q^\prime$, and $CQQ^\prime$, determine the value of $S^2$.

2011 German National Olympiad, 3

Let $ABC$ be an acute triangle and $D$ the foot of the altitude from $A$ onto $BC$. A semicircle with diameter $BC$ intersects segments $AB,AC$ and $AD$ in the points $F,E$ resp. $X$. The circumcircles of the triangles $DEX$ and $DXF$ intersect $BC$ in $L$ resp. $N$ other than $D$. Prove $BN=LC$.

2016 PUMaC Team, 13

Ayase randomly picks a number $x \in (0, 1]$ with uniform probability. He then draws the six points $(0, 0, 0),(x, 0, 0),(2x, 3x, 0),(5, 5, 2),(7, 3, 0),(9, 1, 4)$. If the expected value of the volume of the convex polyhedron formed by these six points can be written as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, find $m + n$

2014 AMC 10, 13

Tags: geometry
Equilateral $\triangle ABC$ has side length $1$, and squares $ABDE$, $BCHI$, $CAFG$ lie outside the triangle. What is the area of hexagon $DEFGHI$? [asy] import graph; size(6cm); pen dps = linewidth(0.7) + fontsize(8); defaultpen(dps); pair B = (0,0); pair C = (1,0); pair A = rotate(60,B)*C; pair E = rotate(270,A)*B; pair D = rotate(270,E)*A; pair F = rotate(90,A)*C; pair G = rotate(90,F)*A; pair I = rotate(270,B)*C; pair H = rotate(270,I)*B; draw(A--B--C--cycle); draw(A--E--D--B); draw(A--F--G--C); draw(B--I--H--C); draw(E--F); draw(D--I); draw(I--H); draw(H--G); label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,W); label("$E$",E,W); label("$F$",F,E); label("$G$",G,E); label("$H$",H,SE); label("$I$",I,SW); [/asy] $ \textbf{(A)}\ \dfrac{12+3\sqrt3}4\qquad\textbf{(B)}\ \dfrac92\qquad\textbf{(C)}\ 3+\sqrt3\qquad\textbf{(D)}\ \dfrac{6+3\sqrt3}2\qquad\textbf{(E)}\ 6 $

1996 Turkey Team Selection Test, 1

The diagonals $AC$ and $BD$ of a convex quadrilateral $ABCD$ with $S_{ABC} = S_{ADC}$ intersect at $E$. The lines through $E$ parallel to $AD$, $DC$, $CB$, $BA$ meet $AB$, $BC$, $CD$, $DA$ at $K$, $L$, $M$, $N$, respectively. Compute the ratio $\frac{S_{KLMN}}{S_{ABC}}$