This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1996 AIME Problems, 15

In parallelogram $ABCD,$ let $O$ be the intersection of diagonals $\overline{AC}$ and $\overline{BD}.$ Angles $CAB$ and $DBC$ are each twice as large as angle $DBA,$ and angle $ACB$ is $r$ times as large as angle $AOB.$ Find the greatest integer that does not exceed $1000r.$

2017 BMT Spring, 2

Barack is an equilateral triangle and Michelle is a square. If Barack and Michelle each have perimeter $ 12$, find the area of the polygon with larger area.

2011 Regional Competition For Advanced Students, 3

Let $k$ be a circle centered at $M$ and let $t$ be a tangentline to $k$ through some point $T\in k$. Let $P$ be a point on $t$ and let $g\neq t$ be a line through $P$ intersecting $k$ at $U$ and $V$. Let $S$ be the point on $k$ bisecting the arc $UV$ not containing $T$ and let $Q$ be the the image of $P$ under a reflection over $ST$. Prove that $Q$, $T$, $U$ and $V$ are vertices of a trapezoid.

2023 Brazil National Olympiad, 2

Let $ABC$ be a right triangle in $B$, with height $BT$, $T$ on the hypotenuse $AC$. Construct the equilateral triangles $BTX$ and $BTY$ so that $X$ is in the same half-plane as $A$ with respect to $BT$ and $Y$ is in the same half-plane as $C$ with respect to $BT$. Point $P$ is the intersection of $AY$ and $CX$. Show that $$PA \cdot BC = PB \cdot CA = PC \cdot AB.$$

2009 India National Olympiad, 1

Let $ ABC$ be a tringle and let $ P$ be an interior point such that $ \angle BPC \equal{} 90 ,\angle BAP \equal{} \angle BCP$.Let $ M,N$ be the mid points of $ AC,BC$ respectively.Suppose $ BP \equal{} 2PM$.Prove that $ A,P,N$ are collinear.

2004 National High School Mathematics League, 7

In rectangular coordinate system, the area which is surrounded by the figure of $f(x)=a\sin ax+\cos ax(a>0)$ on a complete period and the figure of $g(x)=\sqrt{a^2+1}$ is________.

Brazil L2 Finals (OBM) - geometry, 2013.5

Tags: geometry
Let ABC be a scalene triangle and AM is the median relative to side BC. The diameter circumference AM intersects for the second time the side AB and AC at points P and Q, respectively, both different from A. Assuming that PQ is parallel to BC, determine the angle measurement <BAC. Any solution without trigonometry?

2012 IMAR Test, 3

Given a triangle $ABC$, let $D$ be a point different from $A$ on the external bisectrix $\ell$ of the angle $BAC$, and let $E$ be an interior point of the segment $AD$. Reflect $\ell$ in the internal bisectrices of the angles $BDC$ and $BEC$ to obtain two lines that meet at some point $F$. Show that the angles $ABD$ and $EBF$ are congruent.

2010 Saudi Arabia BMO TST, 2

Let $ABC$ be an acute triangle and let $MNPQ$ be a square inscribed in the triangle such that $M ,N \in BC$, $P \in AC$, $Q \in AB$. Prove that $area \, [MNPQ] \le \frac12 area\, [ABC]$.

2009 Korea Junior Math Olympiad, 5

Acute triangle $\triangle ABC$ satis es $AB < AC$. Let the circumcircle of this triangle be $O$, and the midpoint of $BC,CA,AB$ be $D,E,F$. Let $P$ be the intersection of the circle with $AB$ as its diameter and line $DF$, which is in the same side of $C$ with respect to $AB$. Let $Q$ be the intersection of the circle with $AC$ as its diameter and the line $DE$, which is in the same side of $B$ with respect to $AC$. Let $PQ \cap BC = R$, and let the line passing through $R$ and perpendicular to $BC$ meet $AO$ at $X$. Prove that $AX = XR$.

2016 Iran Team Selection Test, 1

Tags: geometry
Let $ABC$ be an acute triangle and let $M$ be the midpoint of $AC$. A circle $\omega$ passing through $B$ and $M$ meets the sides $AB$ and $BC$ at points $P$ and $Q$ respectively. Let $T$ be the point such that $BPTQ$ is a parallelogram. Suppose that $T$ lies on the circumcircle of $ABC$. Determine all possible values of $\frac{BT}{BM}$.

1980 IMO, 12

There is a triangle $ABC$. Its circumcircle and its circumcentre are given. Show how the orthocentre of $ABC$ may be constructed using only a straightedge (unmarked ruler). [The straightedge and paper may be assumed large enough for the construction to be completed]

2002 Iran MO (3rd Round), 24

$A,B,C$ are on circle $\mathcal C$. $I$ is incenter of $ABC$ , $D$ is midpoint of arc $BAC$. $W$ is a circle that is tangent to $AB$ and $AC$ and tangent to $\mathcal C$ at $P$. ($W$ is in $\mathcal C$) Prove that $P$ and $I$ and $D$ are on a line.

2010 Contests, 3

Let $AXYZB$ be a convex pentagon inscribed in a semicircle of diameter $AB$. Denote by $P$, $Q$, $R$, $S$ the feet of the perpendiculars from $Y$ onto lines $AX$, $BX$, $AZ$, $BZ$, respectively. Prove that the acute angle formed by lines $PQ$ and $RS$ is half the size of $\angle XOZ$, where $O$ is the midpoint of segment $AB$.

2013 National Chemistry Olympiad, 53

Tags: geometry
On the basis of VSEPR theory, what geometry is predicted for the central sulfur atom in $\ce{SOCl2}$? $ \textbf{(A) }\text{bent}\qquad\textbf{(B) }\text{T-shaped}\qquad\textbf{(C) }\text{trigonal planar} \qquad\textbf{(D) }\text{trigonal pyramidal} \qquad$

1980 IMO, 24

Let $k$ be the incircle and let $l$ be the circumcircle of the triangle $ABC$. Prove that for each point $A'$ of the circle $l$, there exists a triangle $(A'B'C')$, inscribed in the circle $l$ and circumscribed about the circle $k.$

Brazil L2 Finals (OBM) - geometry, 2014.2

Let $AB$ be a diameter of the circunference $\omega$, let $C$ and $D$ be point in this circunference, such that $CD$ is perpedicular to $AB$. Let $E$ be the point of intersection of the segment $CD$ and the segment $AB$, and a point $P$ that is in the segment $CD, P$ is different of $E$. The lines $AP$ and $BP$ intersects $\omega$, in $F$ and $G$ respectively. If $O$ is the circumcenter of triangle $EFG$, show that the area of triangle $OCD$ is invariant, independent of the position of the point $P$.

1989 Irish Math Olympiad, 3

Suppose P is a point in the interior of a triangle ABC, that x; y; z are the distances from P to A; B; C, respectively, and that p; q; r are the per- pendicular distances from P to the sides BC; CA; AB, respectively. Prove that $xyz \geq 8pqr$; with equality implying that the triangle ABC is equilateral.

1977 USAMO, 2

Tags: geometry , vector
$ ABC$ and $ A'B'C'$ are two triangles in the same plane such that the lines $ AA',BB',CC'$ are mutually parallel. Let $ [ABC]$ denotes the area of triangle $ ABC$ with an appropriate $ \pm$ sign, etc.; prove that \[ 3([ABC] \plus{} [A'B'C']) \equal{} [AB'C'] \plus{} [BC'A'] \plus{} [CA'B'] \plus{} [A'BC] \plus{} [B'CA] \plus{} [C'AB].\]

2009 Serbia Team Selection Test, 3

Let $ k$ be the inscribed circle of non-isosceles triangle $ \triangle ABC$, which center is $ S$. Circle $ k$ touches sides $ BC,CA,AB$ in points $ P,Q,R$ respectively. Line $ QR$ intersects $ BC$ in point $ M$. Let a circle which contains points $ B$ and $ C$ touch $ k$ in point $ N$. Circumscribed circle of $ \triangle MNP$ intersects line $ AP$ in point $ L$, different from $ P$. Prove that points $ S,L$ and $ M$ are collinear.

2002 Tournament Of Towns, 1

In a triangle $ABC$ it is given $\tan A,\tan B,\tan C$ are integers. Find their values.

2010 Math Prize For Girls Problems, 10

The triangle $ABC$ lies on the coordinate plane. The midpoint of $\overline{AB}$ has coordinates $(-16, -63)$, the midpoint of $\overline{AC}$ has coordinates $(13, 50)$, and the midpoint of $\overline{BC}$ has coordinates $(6, -85)$. What are the coordinates of point $A$?

Ukraine Correspondence MO - geometry, 2021.11

Let $D$ be a point on the side $AB$ of the triangle $ABC$ such that $BD = CD$, and let the points $E$ on the side $BC$ and $F$ on the extension $AC$ beyond the point $C$ be such that $EF\parallel CD$. The lines $AE$ and $CD$ intersect at the point $G$. Prove that $BC$ is the bisector of the angle $FBG$.

2018 HMNT, 6

Tags: geometry
Triangle $\triangle PQR$, with $PQ=PR=5$ and $QR=6$, is inscribed in circle $\omega$. Compute the radius of the circle with center on $\overline{QR}$ which is tangent to both $\omega$ and $\overline{PQ}$.

2012 USA TSTST, 2

Tags: geometry
Let $ABCD$ be a quadrilateral with $AC = BD$. Diagonals $AC$ and $BD$ meet at $P$. Let $\omega_1$ and $O_1$ denote the circumcircle and the circumcenter of triangle $ABP$. Let $\omega_2$ and $O_2$ denote the circumcircle and circumcenter of triangle $CDP$. Segment $BC$ meets $\omega_1$ and $\omega_2$ again at $S$ and $T$ (other than $B$ and $C$), respectively. Let $M$ and $N$ be the midpoints of minor arcs $\widehat {SP}$ (not including $B$) and $\widehat {TP}$ (not including $C$). Prove that $MN \parallel O_1O_2$.