Found problems: 25757
2017 BmMT, Ind. Round
[b]p1.[/b] It’s currently $6:00$ on a $12$ hour clock. What time will be shown on the clock $100$ hours from now? Express your answer in the form hh : mm.
[b]p2.[/b] A tub originally contains $10$ gallons of water. Alex adds some water, increasing the amount of water by 20%. Barbara, unhappy with Alex’s decision, decides to remove $20\%$ of the water currently in the tub. How much water, in gallons, is left in the tub? Express your answer as an exact decimal.
[b]p3.[/b] There are $2000$ math students and $4000$ CS students at Berkeley. If $5580$ students are either math students or CS students, then how many of them are studying both math and CS?
[b]p4.[/b] Determine the smallest integer $x$ greater than $1$ such that $x^2$ is one more than a multiple of $7$.
[b]p5.[/b] Find two positive integers $x, y$ greater than $1$ whose product equals the following sum:
$$9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 + 29.$$
Express your answer as an ordered pair $(x, y)$ with $x \le y$.
[b]p6.[/b] The average walking speed of a cow is $5$ meters per hour. If it takes the cow an entire day to walk around the edges of a perfect square, then determine the area (in square meters) of this square.
[b]p7.[/b] Consider the cube below. If the length of the diagonal $AB$ is $3\sqrt3$, determine the volume of the cube.
[img]https://cdn.artofproblemsolving.com/attachments/4/d/3a6fdf587c12f2e4637a029f38444914e161ac.png[/img]
[b]p8.[/b] I have $18$ socks in my drawer, $6$ colored red, $8$ colored blue and $4$ colored green. If I close my eyes and grab a bunch of socks, how many socks must I grab to guarantee there will be two pairs of matching socks?
[b]p9.[/b] Define the operation $a @ b$ to be $3 + ab + a + 2b$. There exists a number $x$ such that $x @ b = 1$ for all $b$. Find $x$.
[b]p10.[/b] Compute the units digit of $2017^{(2017^2)}$.
[b]p11.[/b] The distinct rational numbers $-\sqrt{-x}$, $x$, and $-x$ form an arithmetic sequence in that order. Determine the value of $x$.
[b]p12.[/b] Let $y = x^2 + bx + c$ be a quadratic function that has only one root. If $b$ is positive, find $\frac{b+2}{\sqrt{c}+1}$.
[b]p13.[/b] Alice, Bob, and four other people sit themselves around a circular table. What is the probability that Alice does not sit to the left or right of Bob?
[b]p14.[/b] Let $f(x) = |x - 8|$. Let $p$ be the sum of all the values of $x$ such that $f(f(f(x))) = 2$ and $q$ be the minimum solution to $f(f(f(x))) = 2$. Compute $p \cdot q$.
[b]p15.[/b] Determine the total number of rectangles ($1 \times 1$, $1 \times 2$, $2 \times 2$, etc.) formed by the lines in the figure below:
$ \begin{tabular}{ | l | c | c | r| }
\hline
& & & \\ \hline
& & & \\ \hline
& & & \\ \hline
& & & \\
\hline
\end{tabular}
$
[b]p16.[/b] Take a square $ABCD$ of side length $1$, and let $P$ be the midpoint of $AB$. Fold the square so that point $D$ touches $P$, and let the intersection of the bottom edge $DC$ with the right edge be $Q$. What is $BQ$?
[img]https://cdn.artofproblemsolving.com/attachments/1/1/aeed2c501e34a40a8a786f6bb60922b614a36d.png[/img]
[b]p17.[/b] Let $A$, $B$, and $k$ be integers, where $k$ is positive and the greatest common divisor of $A$, $B$, and $k$ is $1$. Define $x\# y$ by the formula $x\# y = \frac{Ax+By}{kxy}$ . If $8\# 4 = \frac12$ and $3\# 1 = \frac{13}{6}$ , determine the sum $A + B + k$.
[b]p18.[/b] There are $20$ indistinguishable balls to be placed into bins $A$, $B$, $C$, $D$, and $E$. Each bin must have at least $2$ balls inside of it. How many ways can the balls be placed into the bins, if each ball must be placed in a bin?
[b]p19.[/b] Let $T_i$ be a sequence of equilateral triangles such that
(a) $T_1$ is an equilateral triangle with side length 1.
(b) $T_{i+1}$ is inscribed in the circle inscribed in triangle $T_i$ for $i \ge 1$.
Find $$\sum^{\infty}_{i=1} Area (T_i).$$
[b]p20.[/b] A [i]gorgeous [/i] sequence is a sequence of $1$’s and $0$’s such that there are no consecutive $1$’s. For instance, the set of all gorgeous sequences of length $3$ is $\{[1, 0, 0]$,$ [1, 0, 1]$, $[0, 1, 0]$, $[0, 0, 1]$, $[0, 0, 0]\}$. Determine the number of gorgeous sequences of length $7$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2003 AMC 10, 23
A regular octagon $ ABCDEFGH$ has an area of one square unit. What is the area of the rectangle $ ABEF$?
[asy]unitsize(8mm);
defaultpen(linewidth(.8pt)+fontsize(6pt));
pair C=dir(22.5), B=dir(67.5), A=dir(112.5), H=dir(157.5), G=dir(202.5), F=dir(247.5), E=dir(292.5), D=dir(337.5);
draw(A--B--C--D--E--F--G--H--cycle);
label("$A$",A,NNW);
label("$B$",B,NNE);
label("$C$",C,ENE);
label("$D$",D,ESE);
label("$E$",E,SSE);
label("$F$",F,SSW);
label("$G$",G,WSW);
label("$H$",H,WNW);[/asy]$ \textbf{(A)}\ 1\minus{}\frac{\sqrt2}{2} \qquad
\textbf{(B)}\ \frac{\sqrt2}{4} \qquad
\textbf{(C)}\ \sqrt2\minus{}1 \qquad
\textbf{(D)}\ \frac12 \qquad
\textbf{(E)}\ \frac{1\plus{}\sqrt2}{4}$
2021 Yasinsky Geometry Olympiad, 4
Let $BF$ and $CN$ be the altitudes of the acute triangle $ABC$. Bisectors the angles $ACN$ and $ABF$ intersect at the point $T$. Find the radius of the circle circumscribed around the triangle $FTN$, if it is known that $BC = a$.
(Grigory Filippovsky)
2014 NIMO Problems, 2
In the Generic Math Tournament, $99$ people participate. One of the participants, Alfred, scores 16th in Algebra, 30th in Combinatorics, and 23rd in Geometry (and does not tie with anyone). The overall ranking is computed by adding the scores from all three tests. Given this information, let $B$ be the best ranking that Alfred could have achieved, and let $W$ be the worst ranking that he could have achieved. Compute $100B+W$.
[i]Proposed by Lewis Chen[/i]
OMMC POTM, 2024 3
Define acute triangle $ABC$ with $AB = AC$ and circumcenter $O$. Define point $D$ inside $ABC$ on the circumcircle of $BOC$. Prove that the distance from $A$ to line $DO$ is half $BD+DC$..
1964 Poland - Second Round, 2
The circle is divided into four non-overlapping gaps $ AB $, $ BC $, $ CD $ and $ DA $. Prove that the segment joining the midpoints of the arcs $AB$ and $CD$ is perpendicular to the segment joining the midpoints of the arcs $BC$ and $DA$.
2022 Malaysia IMONST 2, 4
Given a pentagon $ABCDE$ with all its interior angles less than $180^\circ$. Prove that if $\angle ABC = \angle ADE$ and $\angle ADB = \angle AEC$, then $\angle BAC = \angle DAE$.
2013 South africa National Olympiad, 3
Let ABC be an acute-angled triangle and AD one of its altitudes (D on BC). The line through D parallel to AB is denoted by $l$, and t is the tangent to the circumcircle of ABC at A. Finally, let E be the intersection of $l$ and t. Show that CE and t are perpendicular to each other.
2008 Moldova MO 11-12, 3
In the usual coordinate system $ xOy$ a line $ d$ intersect the circles $ C_1:$ $ (x\plus{}1)^2\plus{}y^2\equal{}1$ and $ C_2:$ $ (x\minus{}2)^2\plus{}y^2\equal{}4$ in the points $ A,B,C$ and $ D$ (in this order). It is known that $ A\left(\minus{}\frac32,\frac{\sqrt3}2\right)$ and $ \angle{BOC}\equal{}60^{\circ}$. All the $ Oy$ coordinates of these $ 4$ points are positive. Find the slope of $ d$.
1997 IberoAmerican, 3
Let $P = \{P_1, P_2, ..., P_{1997}\}$ be a set of $1997$ points in the interior of a circle of radius 1, where $P_1$ is the center of the circle. For each $k=1.\ldots,1997$, let $x_k$ be the distance of $P_k$ to the point of $P$ closer to $P_k$, but different from it. Show that $(x_1)^2 + (x_2)^2 + ... + (x_{1997})^2 \le 9.$
2003 National High School Mathematics League, 11
Eight spheres with radius of $1$ are put into a circular column. There are two floors, and each sphere is tangent to adjacent four spheres, one of the bottom surfaces, and the flank. Then the height of the circular column is________.
2005 VTRMC, Problem 4
A cubical box with sides of length $7$ has vertices at $(0,0,0)$, $(7,0,0)$, $(0,7,0)$, $(7,7,0)$, $(0,0,7)$, $(7,0,7)$, $(0,7,7)$, $(7,7,7)$. The inside of the box is lined with mirrors and from the point $(0,1,2)$, a beam of light is directed to the point $(1,3,4)$. The light then reflects repeatedly off the mirrors on the inside of the box. Determine how far the beam of light travels before it first returns to its starting point at $(0,1,2)$.
2015 Saudi Arabia IMO TST, 2
Let $ABC$ be a triangle with orthocenter $H$. Let $P$ be any point of the plane of the triangle. Let $\Omega$ be the circle with the diameter $AP$ . The circle $\Omega$ cuts $CA$ and $AB$ again at $E$ and $F$ , respectively. The line $PH$ cuts $\Omega$ again at $G$. The tangent lines to $\Omega$ at $E, F$ intersect at $T$. Let $M$ be the midpoint of $BC$ and $L$ be the point on $MG$ such that $AL$ and $MT$ are parallel. Prove that $LA$ and $LH$ are orthogonal.
Lê Phúc Lữ
2007 All-Russian Olympiad, 6
Two circles $ \omega_{1}$ and $ \omega_{2}$ intersect in points $ A$ and $ B$. Let $ PQ$ and $ RS$ be segments of common tangents to these circles (points $ P$ and $ R$ lie on $ \omega_{1}$, points $ Q$ and $ S$ lie on $ \omega_{2}$). It appears that $ RB\parallel PQ$. Ray $ RB$ intersects $ \omega_{2}$ in a point $ W\ne B$. Find $ RB/BW$.
[i]S. Berlov [/i]
2011 India IMO Training Camp, 1
Find all positive integer $n$ satisfying the conditions
$a)n^2=(a+1)^3-a^3$
$b)2n+119$ is a perfect square.
Denmark (Mohr) - geometry, 1997.3
About pentagon $ABCDE$ is known that angle $A$ and angle $C$ are right and that the sides $| AB | = 4$, $| BC | = 5$, $| CD | = 10$, $| DE | = 6$. Furthermore, the point $C'$ that appears by mirroring $C$ in the line $BD$, lies on the line segment $AE$. Find angle $E$.
1998 Baltic Way, 15
Given acute triangle $ABC$. Point $D$ is the foot of the perpendicular from $A$ to $BC$. Point $E$ lies on the segment $AD$ and satisfies the equation
\[\frac{AE}{ED}=\frac{CD}{DB}\]
Point $F$ is the foot of the perpendicular from $D$ to $BE$. Prove that $\angle AFC=90^{\circ}$.
2025 Malaysian IMO Training Camp, 5
Let $ABC$ be a scalene triangle and $I$ be its incenter. Suppose the incircle $\omega$ touches $BC$ at a point $D$, and $N$ lies on $\omega$ such that $ND$ is a diameter of $\omega$. Let $X$ and $Y$ be points on lines $AC$ and $AB$ respectively such that $\angle BIX = \angle CIY = 90^\circ$. Let $V$ be the feet of perpendicular from $I$ onto line $XY$. Prove that the points $I$, $V$, $A$, $N$ are concyclic.
[i](Proposed by Ivan Chan Guan Yu)[/i]
2002 District Olympiad, 4
Given the rectangle $ABCD$. The points $E ,F$ lie on the segments $(BC) , (DC)$ respectively, such that $\angle DAF = \angle FAE$. Proce that if $DF + BE = AE$ then $ABCD$ is square.
Kyiv City MO Juniors 2003+ geometry, 2017.8.4
On the sides $BC$ and $CD$ of the square $ABCD$, the points $M$ and $N$ are selected in such a way that $\angle MAN= 45^o$. Using the segment $MN$, as the diameter, we constructed a circle $w$, which intersects the segments $AM$ and $AN$ at points $P$ and $Q$, respectively. Prove that the points $B, P$ and $Q$ lie on the same line.
2007 Tournament Of Towns, 6
Let $P$ and $Q$ be two convex polygons. Let $h$ be the length of the projection of $Q$ onto a line perpendicular to a side of $P$ which is of length $p$. Define $f(P,Q)$ to be the sum of the products $hp$ over all sides of $P$. Prove that $f(P,Q) = f(Q, P)$.
2006 Estonia National Olympiad, 3
Let $AG, CH$ be the angle bisectors of a triangle $ABC$. It is known that one of the intersections of the circles of triangles $ABG$ and $ACH$ lies on the side $BC$. Prove that the angle $BAC$ is $60 ^o$
2018 CMIMC Geometry, 2
Let $ABCD$ be a square of side length $1$, and let $P$ be a variable point on $\overline{CD}$. Denote by $Q$ the intersection point of the angle bisector of $\angle APB$ with $\overline{AB}$. The set of possible locations for $Q$ as $P$ varies along $\overline{CD}$ is a line segment; what is the length of this segment?
2024 All-Russian Olympiad Regional Round, 9.5
Let $ABC$ be an isosceles triangle with $BA=BC$. The points $D, E$ lie on the extensions of $AB, BC$ beyond $B$ such that $DE=AC$. The point $F$ lies on $AC$ is such that $\angle CFE=\angle DEF$. Show that $\angle ABC=2\angle DFE$.
2018 Philippine MO, 1
In triangle $ABC$ with $\angle ABC = 60^{\circ}$ and $5AB = 4BC$, points $D$ and $E$ are the feet of the altitudes from $B$ and $C$, respectively. $M$ is the midpoint of $BD$ and the circumcircle of triangle $BMC$ meets line $AC$ again at $N$. Lines $BN$ and $CM$ meet at $P$. Prove that $\angle EDP = 90^{\circ}$.