This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

V Soros Olympiad 1998 - 99 (Russia), 9.5

In the trapezoid $ABCD$ with bases $BC = a$, $AD = b$, the equality holds: $\angle BAC + \angle ACD = 180^o$. The straight line $AC$ intersects the common tangents to the circumcircles of the triangles $ABC$ and $ACD$ at the points Find $PQ$.

Kyiv City MO Juniors 2003+ geometry, 2016.8.51

In the quadrilateral $ABCD$, shown in fig. , the equations are true: $\angle ABC = \angle BCD$ and $2AB = CD$. On the side $BC$, a point $X$ is selected such that $\angle BAX = \angle CDA$. Prove that $AX = AD$. [img]https://cdn.artofproblemsolving.com/attachments/2/9/0884eb311d1e40300c1e5980fd53eaadfa7a25.png[/img]

2021 ABMC., Team

[u]Round 5[/u] [b]5.1.[/b] Julia baked a pie for herself to celebrate pi day this year. If Julia bakes anyone pie on pi day, the following year on pi day she bakes a pie for herself with $1/3$ probability, she bakes her friend a pie with $1/6$ probability, and she doesn't bake anyone a pie with $1/2$ probability. However, if Julia doesn't make pie on pi day, the following year on pi day she bakes a pie for herself with $1/2$ probability, she bakes her friend a pie with $1/3$ probability, and she doesn't bake anyone a pie with $1/6$ probability. The probability that Julia bakes at least $2$ pies on pi day in the next $5$ years can be expressed as $p/q$, for relatively prime positive integers $p$ and $q$. Compute $p + q$. [b]5.2.[/b] Steven is flipping a coin but doesn't want to appear too lucky. If he ips the coin $8$ times, the probability he only gets sequences of consecutive heads or consecutive tails that are of length $4$ or less can be expressed as $p/q$, for relatively prime positive integers $p$ and $q$. Compute $p + q$. [b]5.3.[/b] Let $ABCD$ be a square with side length $3$. Further, let $E$ be a point on side$ AD$, such that $AE = 2$ and $DE = 1$, and let $F$ be the point on side $AB$ such that triangle $CEF$ is right with hypotenuse $CF$. The value $CF^2$ can be expressed as $m/n$ , where $m$ and $n$ are relatively prime positive integers. Compute $m + n$. [u]Round 6[/u] [b]6.1.[/b] Let $P$ be a point outside circle $\omega$ with center $O$. Let $A,B$ be points on circle $\omega$ such that $PB$ is a tangent to $\omega$ and $PA = AB$. Let $M$ be the midpoint of $AB$. Given $OM = 1$, $PB = 3$, the value of $AB^2$ can be expressed as $m/n$ for relatively prime positive integers $m, n$. Find $m + n$. [b]6.2.[/b] Let $a_0, a_1, a_2,...$with each term defined as $a_n = 3a_{n-1} + 5a_{n-2}$ and $a_0 = 0$, $a_1 = 1$. Find the remainder when $a_{2020}$ is divided by $360$. [b]6.3.[/b] James and Charles each randomly pick two points on distinct sides of a square, and they each connect their chosen pair of points with a line segment. The probability that the two line segments intersect can be expressed as $m/n$ for relatively prime positive integers $m, n$. Find $m + n$. [u]Round 7[/u] [b]7.1.[/b] For some positive integers $x, y$ let $g = gcd (x, y)$ and $\ell = lcm (2x, y)$: Given that the equation $xy+3g+7\ell = 168$ holds, find the largest possible value of $2x + y$. [b]7.2.[/b] Marco writes the polynomials $$f(x) = nx^4 +2x^3 +3x^2 +4x+5$$ and $$g(x) = a(x-1)^4 +b(x-1)^3 +6(x-1)^2 + d(x - 1) + e,$$ where $n, a, b, d, e$ are real numbers. He notices that $g(i) = f(i) - |i|$ for each integer $i$ satisfying $-5 \le i \le -1$. Then $n^2$ can be expressed as $p/q$ for relatively prime positive integers $p, q$. Find $p + q$. [b]7.3. [/b]Equilateral $\vartriangle ABC$ is inscribed in a circle with center $O$. Points $D$ and $E$ are chosen on minor arcs $AB$ and $BC$, respectively. Segment $\overline{CD}$ intersects $\overline{AB}$ and $\overline{AE}$ at $Y$ and $X$, respectively. Given that $\vartriangle DXE$ and $\vartriangle AXC$ have equal area, $\vartriangle AXY$ has area $ 1$, and $\vartriangle ABC$ has area $52$, find the area of $\vartriangle BXC$. [u]Round 8[/u] [b]8.[/b] Let $A$ be the number of total webpage visits our website received last month. Let $B$ be the number photos in our photo collection from ABMC onsite 2017. Let $M$ be the mean speed round score. Further, let $C$ be the number of times the letter c appears in our problem bank. Estimate $$A \cdot B + M \cdot C.$$Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input. $$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.05 |I|}, 13 - \frac{|I-X|}{0.05 |I-2X|} \right\} \right\rceil \right\}$$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2766251p24226451]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 BmMT, Ind. Round

[b]p1.[/b] Ten math students take a test, and the average score on the test is $28$. If five students had an average of $15$, what was the average of the other five students' scores? [b]p2.[/b] If $a\otimes b = a^2 + b^2 + 2ab$, find $(-5\otimes 7) \otimes 4$. [b]p3.[/b] Below is a $3 \times 4$ grid. Fill each square with either $1$, $2$ or $3$. No two squares that share an edge can have the same number. After filling the grid, what is the $4$-digit number formed by the bottom row? [img]https://cdn.artofproblemsolving.com/attachments/9/6/7ef25fc1220d1342be66abc9485c4667db11c3.png[/img] [b]p4.[/b] What is the angle in degrees between the hour hand and the minute hand when the time is $6:30$? [b]p5.[/b] In a small town, there are some cars, tricycles, and spaceships. (Cars have $4$ wheels, tricycles have $3$ wheels, and spaceships have $6$ wheels.) Among the vehicles, there are $24$ total wheels. There are more cars than tricycles and more tricycles than spaceships. How many cars are there in the town? [b]p6.[/b] You toss five coins one after another. What is the probability that you never get two consecutive heads or two consecutive tails? [b]p7.[/b] In the below diagram, $\angle ABC$ and $\angle BCD$ are right angles. If $\overline{AB} = 9$, $\overline{BD} = 13$, and $\overline{CD} = 5$, calculate $\overline{AC}$. [img]https://cdn.artofproblemsolving.com/attachments/7/c/8869144e3ea528116e2d93e14a7896e5c62229.png[/img] [b]p8.[/b] Out of $100$ customers at a market, $80$ purchased oranges, $60$ purchased apples, and $70$ purchased bananas. What is the least possible number of customers who bought all three items? [b]p9.[/b] Francis, Ted and Fred planned to eat cookies after dinner. But one of them sneaked o earlier and ate the cookies all by himself. The three say the following: Francis: Fred ate the cookies. Fred: Ted did not eat the cookies. Ted: Francis is lying. If exactly one of them is telling the truth, who ate all the cookies? [b]p11.[/b] Let $ABC$ be a triangle with a right angle at $A$. Suppose $\overline{AB} = 6$ and $\overline{AC} = 8$. If $AD$ is the perpendicular from $A$ to $BC$, what is the length of $AD$? [b]p12.[/b] How many three digit even numbers are there with an even number of even digits? [b]p13.[/b] Three boys, Bob, Charles and Derek, and three girls, Alice, Elizabeth and Felicia are all standing in one line. Bob and Derek are each adjacent to precisely one girl, while Felicia is next to two boys. If Alice stands before Charles, who stands before Elizabeth, determine the number of possible ways they can stand in a line. [b]p14.[/b] A man $5$ foot, $10$ inches tall casts a $14$ foot shadow. $20$ feet behind the man, a flagpole casts ashadow that has a $9$ foot overlap with the man's shadow. How tall (in inches) is the flagpole? [b]p15.[/b] Alvin has a large bag of balls. He starts throwing away balls as follows: At each step, if he has $n$ balls and 3 divides $n$, then he throws away a third of the balls. If $3$ does not divide $n$ but $2$ divides $n$, then he throws away half of them. If neither $3$ nor $2$ divides $n$, he stops throwing away the balls. If he began with $1458$ balls, after how many steps does he stop throwing away balls? [b]p16.[/b] Oski has $50$ coins that total to a value of $82$ cents. You randomly steal one coin and find out that you took a quarter. As to not enrage Oski, you quickly put the coin back into the collection. However, you are both bored and curious and decide to randomly take another coin. What is the probability that this next coin is a penny? (Every coin is either a penny, nickel, dime or quarter). [b]p17.[/b] Let $ABC$ be a triangle. Let $M$ be the midpoint of $BC$. Suppose $\overline{MA} = \overline{MB} = \overline{MC} = 2$ and $\angle ACB = 30^o$. Find the area of the triangle. [b]p18.[/b] A spirited integer is a positive number representable in the form $20^n + 13k$ for some positive integer $n$ and any integer $k$. Determine how many spirited integers are less than $2013$. [b]p19. [/b]Circles of radii $20$ and $13$ are externally tangent at $T$. The common external tangent touches the circles at $A$, and $B$, respectively where $A \ne B$. The common internal tangent of the circles at $T$ intersects segment $AB$ at $X$. Find the length of $AX$. [b]p20.[/b] A finite set of distinct, nonnegative integers $\{a_1, ... , a_k\}$ is called admissible if the integer function $f(n) = (n + a_1) ... (n + a_k)$ has no common divisor over all terms; that is, $gcd \left(f(1), f(2),... f(n)\right) = 1$ for any integer$ n$. How many admissible sets only have members of value less than $10$? $\{4\}$ and $\{0, 2, 6\}$ are such sets, but $\{4, 9\}$ and $\{1, 3, 5\}$ are not. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Austrian MO National Competition, 2

Let $ ABC$ be an acute-angled, non-isosceles triangle with orthocenter $H$, $M$ midpoint of side $AB$ and $w$ bisector of angle $\angle ACB$. Let $S$ be the point of intersection of the perpendicular bisector of side $AB$ with $w$ and $F$ the foot of the perpendicular from $H$ on $w$. Prove that the segments $MS$ and $MF$ are equal. [i](Karl Czakler)[/i]

2024 Baltic Way, 15

There is a set of $N\geq 3$ points in the plane, such that no three of them are collinear. Three points $A$, $B$, $C$ in the set are said to form a [i]Baltic triangle[/i] if no other point in the set lies on the circumcircle of triangle $ABC$. Assume that there exists at least one Baltic triangle. Show that there exist at least $\displaystyle\frac{N}{3}$ Baltic triangles.

2010 CHMMC Fall, Mixer

[i]In this round, problems will depend on the answers to other problems. A bolded letter is used to denote a quantity whose value is determined by another problem's answer.[/i] [u]Part I[/u] [b]p1.[/b] Let F be the answer to problem number $6$. You want to tile a nondegenerate square with side length $F$ with $1\times 2$ rectangles and $1 \times 1$ squares. The rectangles can be oriented in either direction. How many ways can you do this? [b]p2.[/b] Let [b]A[/b] be the answer to problem number $1$. Triangle $ABC$ has a right angle at $B$ and the length of $AC$ is [b]A[/b]. Let $D$ be the midpoint of $AB$, and let $P$ be a point inside triangle $ABC$ such that $PA = PC = \frac{7\sqrt5}{4}$ and $PD = \frac74$ . The length of $AB^2$ is expressible as $m/n$ for $m, n$ relatively prime positive integers. Find $m$. [b]p3.[/b] Let [b]B[/b] be the answer to problem number $2$. Let $S$ be the set of positive integers less than or equal to [b]B[/b]. What is the maximum size of a subset of $S$ whose elements are pairwise relatively prime? [b]p4.[/b] Let [b]C[/b] be the answer to problem number $3$. You have $9$ shirts and $9$ pairs of pants. Each is either red or blue, you have more red shirts than blue shirts, and you have same number of red shirts as blue pants. Given that you have [b]C[/b] ways of wearing a shirt and pants whose colors match, find out how many red shirts you own. [b]p5.[/b] Let [b]D[/b] be the answer to problem number $4$. You have two odd positive integers $a, b$. It turns out that $lcm(a, b) + a = gcd(a, b) + b =$ [b]D[/b]. Find $ab$. [b]p6.[/b] Let [b]E[/b] be the answer to problem number $5$. A function $f$ defined on integers satisfies $f(y)+f(12-y) = 10$ and $f(y) + f(8 - y) = 4$ for all integers $y$. Given that $f($ [b]E[/b] $) = 0$, compute $f(4)$. [u]Part II[/u] [b]p7.[/b] Let [b]L[/b] be the answer to problem number $12$. You want to tile a nondegenerate square with side length [b]L[/b] with $1\times 2$ rectangles and $7\times 7$ squares. The rectangles can be oriented in either direction. How many ways can you do this? [b]p8.[/b] Let [b]G[/b] be the answer to problem number $7$. Triangle $ABC$ has a right angle at $B$ and the length of $AC$ is [b]G[/b]. Let $D$ be the midpoint of $AB$, and let $P$ be a point inside triangle $ABC$ such that $PA = PC = \frac12$ and $PD = \frac{1}{2010}$ . The length of $AB^2$ is expressible as $m/n$ for $m, n$ relatively prime positive integers. Find $m$. [b]p9.[/b] Let [b]H[/b] be the answer to problem number $8$. Let $S$ be the set of positive integers less than or equal to [b]H[/b]. What is the maximum size of a subset of $S$ whose elements are pairwise relatively prime? [b]p10.[/b] Let [b]I[/b] be the answer to problem number $9$. You have $391$ shirts and $391$ pairs of pants. Each is either red or blue, you have more red shirts than blue shirts, and you have same number of red shirts as red pants. Given that you have [b]I[/b] ways of wearing a shirt and pants whose colors match, find out how many red shirts you own. [b]p11.[/b] Let [b]J[/b] be the answer to problem number $10$. You have two odd positive integers $a, b$. It turns out that $lcm(a, b) + 2a = 2 gcd(a, b) + b = $ [b]J[/b]. Find $ab$. [b]p12.[/b] Let [b]K[/b] be the answer to problem number $11$. A function $f$ defined on integers satisfies $f(y)+f(7-y) = 8$ and $f(y) + f(5 - y) = 4$ for all integers $y$. Given that $f($ [b]K[/b] $) = 453$, compute $f(2)$. PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1968 Bulgaria National Olympiad, Problem 5

The point $M$ is inside the tetrahedron $ABCD$ and the intersection points of the lines $AM,BM,CM$ and $DM$ with the opposite walls are denoted with $A_1,B_1,C_1,D_1$ respectively. It is given also that the ratios $\frac{MA}{MA_1}$, $\frac{MB}{MB_1}$, $\frac{MC}{MC_1}$, and $\frac{MD}{MD_1}$ are equal to the same number $k$. Find all possible values of $k$. [i]K. Petrov[/i]

2003 National High School Mathematics League, 3

Line passes the focal point $F$ of parabola $y^2=8(x+2)$ with bank angle of $60^{\circ}$ intersects the parabola at $A,B$. Perpendicular bisector of $AB$ intersects $x$-axis at $P$, then the length of $PF$ is $\text{(A)}\frac{16}{3}\qquad\text{(B)}\frac{8}{3}\qquad\text{(C)}\frac{16}{3}\sqrt3\qquad\text{(D)}8\sqrt3$

2011 Dutch IMO TST, 5

Let $ABC$ be a triangle with $|AB|> |BC|$. Let $D$ be the midpoint of $AC$. Let $E$ be the intersection of the angular bisector of $\angle ABC$ and the line $AC$. Let $F$ be the point on $BE$ such that $CF$ is perpendicular to $BE$. Finally, let $G$ be the intersection of $CF$ and $BD$. Prove that $DF$ divides the line segment $EG$ into two equal parts.

1979 IMO Longlists, 76

Tags: geometry
Suppose that a triangle whose sides are of integer lengths is inscribed in a circle of diameter $6.25$. Find the sides of the triangle.

2014 Sharygin Geometry Olympiad, 12

Circles $\omega_1$ and $\omega_2$ meet at points $A$ and $B$. Let points $K_1$ and $K_2 $ of $\omega_1$ and $\omega_2$ respectively be such that $K_1A$ touches $\omega_2$, and $K_2A$ touches $\omega_1$. The circumcircle of triangle $K_1BK_2$ meets lines $AK_1$ and $AK_2$ for the second time at points $L_1$ and $L_2$ respectively. Prove that $L_1$ and $L_2$ are equidistant from line $AB$.

2018 Iranian Geometry Olympiad, 5

$ABCD$ is a cyclic quadrilateral. A circle passing through $A,B$ is tangent to segment $CD$ at point $E$. Another circle passing through $C,D$ is tangent to $AB$ at point $F$. Point $G$ is the intersection point of $AE,DF$, and point $H$ is the intersection point of $BE$, $CF$. Prove that the incenters of triangles $AGF$, $BHF$, $CHE$, $DGE$ lie on a circle. Proposed by Le Viet An (Vietnam)

2008 Germany Team Selection Test, 2

For three points $ X,Y,Z$ let $ R_{XYZ}$ be the circumcircle radius of the triangle $ XYZ.$ If $ ABC$ is a triangle with incircle centre $ I$ then we have: \[ \frac{1}{R_{ABI}} \plus{} \frac{1}{R_{BCI}} \plus{} \frac{1}{R_{CAI}} \leq \frac{1}{\bar{AI}} \plus{} \frac{1}{\bar{BI}} \plus{} \frac{1}{\bar{CI}}.\]

2010 Bosnia And Herzegovina - Regional Olympiad, 2

Tags: geometry , identity
It is given acute triangle $ABC$ with orthocenter at point $H$. Prove that $$AH \cdot h_a+BH \cdot h_b+CH \cdot h_c=\frac{a^2+b^2+c^2}{2}$$ where $a$, $b$ and $c$ are sides of a triangle, and $h_a$, $h_b$ and $h_c$ altitudes of $ABC$

2025 Bangladesh Mathematical Olympiad, P10

Tags: geometry
In $\triangle ABC$, $DB$ and $DC$ are tangent to the circumcircle of $\triangle ABC$. Let $B'$ be the reflection of $B$ with respect to the line $AC$ and similarly define $C'$. If line $BC$ intersects the circumcircle of $\triangle DB'C'$ at $E$ and $F$, prove that $AE = AF$.

1988 Bundeswettbewerb Mathematik, 2

A circle is somehow divided by $3k$ points into $k$ arcs of lengths $1, 2$ and $3$ each. Prove that two of these points are always diametrically opposite.

2022 Math Hour Olympiad, 6-7

[u]Round 1[/u] [b]p1.[/b] Nineteen witches, all of different heights, stand in a circle around a campfire. Each witch says whether she is taller than both of her neighbors, shorter than both, or in-between. Exactly three said “I am taller.” How many said “I am in-between”? [b]p2.[/b] Alex is writing a sequence of $A$’s and $B$’s on a chalkboard. Any $20$ consecutive letters must have an equal number of $A$’s and $B$’s, but any 22 consecutive letters must have a different number of $A$’s and $B$’s. What is the length of the longest sequence Alex can write?. [b]p3.[/b] A police officer patrols a town whose map is shown. The officer must walk down every street segment at least once and return to the starting point, only changing direction at intersections and corners. It takes the officer one minute to walk each segment. What is the fastest the officer can complete a patrol? [img]https://cdn.artofproblemsolving.com/attachments/a/3/78814b37318adb116466ede7066b0d99d6c64d.png[/img] [b]p4.[/b] A zebra is a new chess piece that jumps in the shape of an “L” to a location three squares away in one direction and two squares away in a perpendicular direction. The picture shows all the moves a zebra can make from its given position. Is it possible for a zebra to make a sequence of $64$ moves on an $8\times 8$ chessboard so that it visits each square exactly once and returns to its starting position? [img]https://cdn.artofproblemsolving.com/attachments/2/d/01a8af0214a2400b279816fc5f6c039320e816.png[/img] [b]p5.[/b] Ann places the integers $1, 2,..., 100$ in a $10 \times 10$ grid, however she wants. In each round, Bob picks a row or column, and Ann sorts it from lowest to highest (left-to-right for rows; top-to-bottom for columns). However, Bob never sees the grid and gets no information from Ann. After eleven rounds, Bob must name a single cell that is guaranteed to contain a number that is at least $30$ and no more than $71$. Can he find a strategy to do this, no matter how Ann originally arranged the numbers? [u]Round 2[/u] [b]p6.[/b] Evelyn and Odette are playing a game with a deck of $101$ cards numbered $1$ through $101$. At the start of the game the deck is split, with Evelyn taking all the even cards and Odette taking all the odd cards. Each shuffles her cards. On every move, each player takes the top card from her deck and places it on a table. The player whose number is higher takes both cards from the table and adds them to the bottom of her deck, first the opponent’s card, then her own. The first player to run out of cards loses. Card $101$ was played against card $2$ on the $10$th move. Prove that this game will never end. [img]https://cdn.artofproblemsolving.com/attachments/8/1/aa16fe1fb4a30d5b9e89ac53bdae0d1bdf20b0.png[/img] [b]p7.[/b] The Vogon spaceship Tempest is descending on planet Earth. It will land on five adjacent buildings within a $10 \times 10$ grid, crushing any teacups on roofs of buildings within a $5 \times 1$ length of blocks (vertically or horizontally). As Commander of the Space Force, you can place any number of teacups on rooftops in advance. When the ship lands, you will hear how many teacups the spaceship breaks, but not where they were. (In the figure, you would hear $4$ cups break.) What is the smallest number of teacups you need to place to ensure you can identify at least one building the spaceship landed on? [img]https://cdn.artofproblemsolving.com/attachments/8/7/2a48592b371bba282303e60b4ff38f42de3551.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2007 IberoAmerican, 3

Two teams, $ A$ and $ B$, fight for a territory limited by a circumference. $ A$ has $ n$ blue flags and $ B$ has $ n$ white flags ($ n\geq 2$, fixed). They play alternatively and $ A$ begins the game. Each team, in its turn, places one of his flags in a point of the circumference that has not been used in a previous play. Each flag, once placed, cannot be moved. Once all $ 2n$ flags have been placed, territory is divided between the two teams. A point of the territory belongs to $ A$ if the closest flag to it is blue, and it belongs to $ B$ if the closest flag to it is white. If the closest blue flag to a point is at the same distance than the closest white flag to that point, the point is neutral (not from $ A$ nor from $ B$). A team wins the game is their points cover a greater area that that covered by the points of the other team. There is a draw if both cover equal areas. Prove that, for every $ n$, team $ B$ has a winning strategy.

2016 Korea National Olympiad, 2

Tags: geometry , incenter
A non-isosceles triangle $\triangle ABC$ has its incircle tangent to $BC, CA, AB$ at points $D, E, F$. Let the incenter be $I$. Say $AD$ hits the incircle again at $G$, at let the tangent to the incircle at $G$ hit $AC$ at $H$. Let $IH \cap AD = K$, and let the foot of the perpendicular from $I$ to $AD$ be $L$. Prove that $IE \cdot IK= IC \cdot IL$.

2012 Czech And Slovak Olympiad IIIA, 4

Inside the parallelogram $ABCD$ is a point $X$. Make a line that passes through point $X$ and divides the parallelogram into two parts whose areas differ from each other the most.

1997 AMC 12/AHSME, 26

Triangle $ ABC$ and point $ P$ in the same plane are given. Point $ P$ is equidistant from $ A$ and $ B$, angle $ APB$ is twice angle $ ACB$, and $ \overline{AC}$ intersects $ \overline{BP}$ at point $ D$. If $ PB \equal{} 3$ and $ PD \equal{} 2$, then $ AD\cdot CD \equal{}$ $ \textbf{(A)}\ 5\qquad \textbf{(B)}\ 6\qquad \textbf{(C)}\ 7\qquad \textbf{(D)}\ 8\qquad \textbf{(E)}\ 9$ [asy]defaultpen(linewidth(.8pt)); dotfactor=4; pair A = origin; pair B = (2,0); pair C = (3,1); pair P = (1,2.25); pair D = intersectionpoint(P--B,C--A); dot(A);dot(B);dot(C);dot(P);dot(D); label("$A$",A,SW);label("$B$",B,SE);label("$C$",C,N);label("$D$",D,NE + N);label("$P$",P,N); draw(A--B--P--cycle); draw(A--C--B--cycle);[/asy]

MIPT student olimpiad spring 2022, 2

Prove that every section of the cube $Q = {[-1,1]}^n \subset R^n$ linear k-dimensional subspace $L\subseteq R^n$ has a diameter of at least $2\sqrt k$.

2004 Estonia Team Selection Test, 2

Let $O$ be the circumcentre of the acute triangle $ABC$ and let lines $AO$ and $BC$ intersect at point $K$. On sides $AB$ and $AC$, points $L$ and $M$ are chosen such that $|KL|= |KB|$ and $|KM| = |KC|$. Prove that segments $LM$ and $BC$ are parallel.

2019 Estonia Team Selection Test, 10

Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.