Found problems: 25757
2007 Harvard-MIT Mathematics Tournament, 5
Five marbles of various sizes are placed in a conical funnel. Each marble is in contact with the adjacent marble(s). Also, each marble is in contact all around the funnel wall. The smallest marble has a radius of $8$, and the largest marble has a radius of $18$. What is the radius of the middle marble?
Ukraine Correspondence MO - geometry, 2017.8
On the midline of the isosceles trapezoid $ABCD$ ($BC \parallel AD$) find the point $K$, for which the sum of the angles $\angle DAK + \angle BCK$ will be the smallest.
2002 Iran MO (3rd Round), 11
In an $m\times n$ table there is a policeman in cell $(1,1)$, and there is a thief in cell $(i,j)$. A move is going from a cell to a neighbor (each cell has at most four neighbors). Thief makes the first move, then the policeman moves and ... For which $(i,j)$ the policeman can catch the thief?
2018 Oral Moscow Geometry Olympiad, 2
The diagonals of the trapezoid $ABCD$ are perpendicular ($AD//BC, AD>BC$) . Point $M$ is the midpoint of the side of $AB$, the point $N$ is symmetric of the center of the circumscribed circle of the triangle $ABD$ wrt $AD$. Prove that $\angle CMN = 90^o$.
(A. Mudgal, India)
2012 Middle European Mathematical Olympiad, 2
Let $ a,b$ and $ c $ be positive real numbers with $ abc = 1 $. Prove that
\[ \sqrt{ 9 + 16a^2}+\sqrt{ 9 + 16b^2}+\sqrt{ 9 + 16c^2} \ge 3 +4(a+b+c)\]
2022 IFYM, Sozopol, 6
Let $k$ be a fixed circle in a given plane and a point $C$ out of the plane. Let $A$ be a random point from $k$ and $B$ be its diametrically opposite one in $k$. Find the geometric place of the center of the circumscribed circle of $ABC$.
2021 Princeton University Math Competition, 9
Let $AX$ be a diameter of a circle $\Omega$ with radius $10$, and suppose that $C$ lies on $\Omega$ so that $AC = 16$. Let $D$ be the other point on $\Omega$ so $CX = CD$. From here, define $D'$ to be the reflection of $D$ across the midpoint of $AC$, and $X'$ to be the reflection of $X$ across the midpoint of $CD$. If the area of triangle $CD'X'$ can be written as $\frac{p}{q}$ , where $p, q$ are relatively prime, find $p + q$.
1999 Tournament Of Towns, 5
A square is cut into $100$ rectangles by $9$ straight lines parallel to one of the sides and $9$ lines parallel to another. If exactly $9$ of the rectangles are actually squares, prove that at least two of these $9$ squares are of the same size .
(V Proizvolov)
2019 Indonesia MO, 6
Given a circle with center $O$, such that $A$ is not on the circumcircle.
Let $B$ be the reflection of $A$ with respect to $O$. Now let $P$ be a point on the circumcircle. The line perpendicular to $AP$ through $P$ intersects the circle at $Q$.
Prove that $AP \times BQ$ remains constant as $P$ varies.
1974 Polish MO Finals, 6
Several diagonals in a convex $n$-gon are drawn so as to divide the $n$-gon into triangles and:
(i) the number of diagonals drawn at each vertex is even;
(ii) no two of the diagonals have a common interior point.
Prove that $n$ is divisible by $3$.
1983 IMO Longlists, 11
A boy at point $A$ wants to get water at a circular lake and carry it to point $B$. Find the point $C$ on the lake such that the distance walked by the boy is the shortest possible given that the line $AB$ and the lake are exterior to each other.
Russian TST 2019, P3
Let $\Omega$ be the circumcircle of an acute-angled triangle $ABC$. A point $D$ is chosen on the internal bisector of $\angle ACB$ so that the points $D$ and $C$ are separated by $AB$. A circle $\omega$ centered at $D$ is tangent to the segment $AB$ at $E$. The tangents to $\omega$ through $C$ meet the segment $AB$ at $K$ and $L$, where $K$ lies on the segment $AL$. A circle $\Omega_1$ is tangent to the segments $AL, CL$, and also to $\Omega$ at point $M$. Similarly, a circle $\Omega_2$ is tangent to the segments $BK, CK$, and also to $\Omega$ at point $N$. The lines $LM$ and $KN$ meet at $P$. Prove that $\angle KCE = \angle LCP$.
Poland
2008 Tournament Of Towns, 2
Space is dissected into congruent cubes. Is it necessarily true that for each cube there exists another cube so that both cubes have a whole face in common?
2022 JHMT HS, 5
Three congruent equilateral triangles $T_1$, $T_2$, and $T_3$ are stacked from left to right inside rectangle $JHMT$ such that the bottom left vertex of $T_1$ is $T$, the bottom side of $T_1$ lies on $\overline{MT}$, the bottom left vertex of $T_2$ is the midpoint of a side of $T_1$, the bottom left vertex of $T_3$ is the midpoint of a side of $T_2$, and the other two vertices of $T_3$ lie on $\overline{JH}$ and $\overline{HM}$, as shown below. Given that rectangle $JHMT$ has area $2022$, find the area of any one of the triangles $T_1$, $T_2$, or $T_3$.
[asy]
unitsize(0.111111111111111111cm);
real s = sqrt(4044/sqrt(75));
real l = 5s/2;
real w = s * sqrt(3);
pair J,H,M,T,V1,V2,V3,V4,V5,V6,V7,V8,C1,C2,C3;
J = (0,w);
H = (l,w);
M = (l,0);
T = (0,0);
V1 = (s,0);
V2 = (s/2,s * sqrt(3)/2);
V3 = (V1+V2)/2;
V4 = (3 * s/4+s,s * sqrt(3)/4);
V5 = (3 * s/4+s/2,s * sqrt(3)/4+s * sqrt(3)/2);
V6 = (V4+V5)/2;
V7 = (l,s * sqrt(3)/4+s * sqrt(3)/4);
V8 = (l-s/2,w);
C1 = (T+V1+V2)/3;
C2 = (V3+V4+V5)/3;
C3 = (V6+V7+V8)/3;
draw(J--H--M--T--cycle);
draw(V1--V2--T);
draw(V3--V4--V5--cycle);
draw(V6--V7--V8--cycle);
label("$J$", J, NW);
label("$H$", H, NE);
label("$M$", M, SE);
label("$T$", T, SW);
label("$T_1$", C1);
label("$T_2$", C2);
label("$T_3$", C3);
[/asy]
2017 Hong Kong TST, 1
In $\triangle ABC$, let $AD$ be the angle bisector of $\angle BAC$, with $D$ on $BC$. The perpendicular from $B$ to $AD$ intersects the circumcircle of $\triangle ABD$ at $B$ and $E$. Prove that $E$, $A$ and the circumcenter $O$ of $\triangle ABC$ are collinear.
2007 Germany Team Selection Test, 1
A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.
2021 Malaysia IMONST 2, 1
An equilateral triangle $ABC$ is divided by nine lines parallel to $BC$ into ten bands that are equally wide. We colour the bands alternately red and blue, with the smallest band coloured red. The difference between the total area in red and the total area in blue is $20$ $\text{cm}^2$.
What is the area of triangle $ABC$?
2010 Mid-Michigan MO, 10-12
[b]p1.[/b] Find all solutions $a, b, c, d, e, f, g$ if it is known that they represent distinct digits and satisfy the following:
$\begin{tabular}{ccccccc}
& & & a & b & c & d \\
x & & & & & a & b \\
\hline
& & c & d & b & d & b \\
+ & c & e & b & f & b & \\
\hline
& c & g & a & e & g & b \\
\end{tabular}$
[b]p2.[/b] $5$ numbers are placed on the circle. It is known that the sum of any two neighboring numbers is not divisible by $3$ and the sum of any three consecutive numbers is not divisible by $3$. How many numbers on the circle are divisible by $3$?
[b]p3.[/b] $n$ teams played in a volleyball tournament. Each team played precisely one game with all other teams. If $x_j$ is the number of victories and $y_j$ is the number of losses of the $j$th team, show that $$\sum^n_{j=1}x^2_j=\sum^n_{j=1} y^2_j $$
[b]p4.[/b] Three cars participated in the car race: a Ford $[F]$, a Toyota $[T]$, and a Honda $[H]$. They began the race with $F$ first, then $T$, and $H$ last. During the race, $F$ was passed a total of $3$ times, $T$ was passed $5$ times, and $H$ was passed $8$ times. In what order did the cars finish?
[b]p5.[/b] The side of the square is $4$ cm. Find the sum of the areas of the six half-disks shown on the picture.
[img]https://cdn.artofproblemsolving.com/attachments/c/b/73be41b9435973d1c53a20ad2eb436b1384d69.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2005 Bulgaria National Olympiad, 2
Consider two circles $k_{1},k_{2}$ touching externally at point $T$. a line touches $k_{2}$ at point $X$ and intersects $k_{1}$ at points $A$ and $B$. Let $S$ be the second intersection point of $k_{1}$ with the line $XT$ . On the arc $\widehat{TS}$ not containing $A$ and $B$ is chosen a point $C$ . Let $\ CY$ be the tangent line to $k_{2}$ with $Y\in k_{2}$ , such that the segment $CY$ does not intersect the segment $ST$ . If $I=XY\cap SC$ . Prove that :
(a) the points $C,T,Y,I$ are concyclic.
(b) $I$ is the excenter of triangle $ABC$ with respect to the side $BC$.
2000 Romania Team Selection Test, 2
Let ABC be a triangle and $M$ be an interior point. Prove that
\[ \min\{MA,MB,MC\}+MA+MB+MC<AB+AC+BC.\]
1996 Swedish Mathematical Competition, 1
Through an arbitrary point inside a triangle, lines parallel to the sides of the triangle are drawn, dividing the triangle into three triangles with areas $T_1,T_2,T_3$ and three parallelograms. If $T$ is the area of the original triangle, prove that
$$T=(\sqrt{T_1}+\sqrt{T_2}+\sqrt{T_3})^2$$
.
2012 CHMMC Spring, Individual
[b]p1.[/b] A robot is at position $0$ on a number line. Each second, it randomly moves either one unit in the positive direction or one unit in the negative direction, with probability $\frac12$ of doing each. Find the probability that after $4$ seconds, the robot has returned to position $0$.
[b]p2.[/b] How many positive integers $n \le 20$ are such that the greatest common divisor of $n$ and $20$ is a prime number?
[b]p3.[/b] A sequence of points $A_1$, $A_2$, $A_3$, $...$, $A_7$ is shown in the diagram below, with $A_1A_2$ parallel to $A_6A_7$. We have $\angle A_2A_3A_4 = 113^o$, $\angle A_3A_4A_5 = 100^o$, and $\angle A_4A_5A_6 = 122^o$. Find the degree measure of $\angle A_1A_2A_3 + \angle A_5A_6A_7$.
[center][img]https://cdn.artofproblemsolving.com/attachments/d/a/75b06a6663b2f4258e35ef0f68fcfbfaa903f7.png[/img][/center]
[b]p4.[/b] Compute
$$\log_3 \left( \frac{\log_3 3^{3^{3^3}}}{\log_{3^3} 3^{3^3}} \right)$$
[b]p5.[/b] In an $8\times 8$ chessboard, a pawn has been placed on the third column and fourth row, and all the other squares are empty. It is possible to place nine rooks on this board such that no two rooks attack each other. How many ways can this be done? (Recall that a rook can attack any square in its row or column provided all the squares in between are empty.)
[b]p6.[/b] Suppose that $a, b$ are positive real numbers with $a > b$ and $ab = 8$. Find the minimum value of $\frac{a^2+b^2}{a-b} $.
[b]p7.[/b] A cone of radius $4$ and height $7$ has $A$ as its apex and $B$ as the center of its base. A second cone of radius $3$ and height $7$ has $B$ as its apex and $A$ as the center of its base. What is the volume of the region contained in both cones?
[b]p8.[/b] Let $a_1$, $a_2$, $a_3$, $a_4$, $a_5$, $a_6$ be a permutation of the numbers $1$, $2$, $3$, $4$, $5$, $6$. We say $a_i$ is visible if $a_i$ is greater than any number that comes before it; that is, $a_j < a_i$ for all $j < i$. For example, the permutation $2$, $4$, $1$, $3$, $6$, $5$ has three visible elements: $2$, $4$, $6$. How many such permutations have exactly two visible elements?
[b]p9.[/b] Let $f(x) = x+2x^2 +3x^3 +4x^4 +5x^5 +6x^6$, and let $S = [f(6)]^5 +[f(10)]^3 +[f(15)]^2$. Compute the remainder when $S$ is divided by $30$.
[b]p10.[/b] In triangle $ABC$, the angle bisector from $A$ and the perpendicular bisector of $BC$ meet at point $D$, the angle bisector from $B$ and the perpendicular bisector of $AC$ meet at point $E$, and the perpendicular bisectors of $BC$ and $AC$ meet at point $F$. Given that $\angle ADF = 5^o$, $\angle BEF = 10^o$, and $AC = 3$, find the length of $DF$.
[img]https://cdn.artofproblemsolving.com/attachments/6/d/6bb8409678a4c44135d393b9b942f8defb198e.png[/img]
[b]p11.[/b] Let $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$. How many subsets $S$ of $\{1, 2,..., 2011\}$ are there such that $$F_{2012} - 1 =\sum_{i \in S}F_i?$$
[b]p12.[/b] Let $a_k$ be the number of perfect squares $m$ such that $k^3 \le m < (k + 1)^3$. For example, $a_2 = 3$ since three squares $m$ satisfy $2^3 \le m < 3^3$, namely $9$, $16$, and $25$. Compute$$ \sum^{99}_{k=0} \lfloor \sqrt{k}\rfloor a_k, $$ where $\lfloor x\rfloor$ denotes the largest integer less than or equal to $x$.
[b]p13.[/b] Suppose that $a, b, c, d, e, f$ are real numbers such that
$$a + b + c + d + e + f = 0,$$
$$a + 2b + 3c + 4d + 2e + 2f = 0,$$
$$a + 3b + 6c + 9d + 4e + 6f = 0,$$
$$a + 4b + 10c + 16d + 8e + 24f = 0,$$
$$a + 5b + 15c + 25d + 16e + 120f = 42.$$
Compute $a + 6b + 21c + 36d + 32e + 720f.$
[b]p14.[/b] In Cartesian space, three spheres centered at $(-2, 5, 4)$, $(2, 1, 4)$, and $(4, 7, 5)$ are all tangent to the $xy$-plane. The $xy$-plane is one of two planes tangent to all three spheres; the second plane can be written as the equation $ax + by + cz = d$ for some real numbers $a$, $b$, $c$, $d$. Find $\frac{c}{a}$ .
[b]p15.[/b] Find the number of pairs of positive integers $a$, $b$, with $a \le 125$ and $b \le 100$, such that $a^b - 1$ is divisible by $125$.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 Czech-Polish-Slovak Match, 1
Let $ABC$ be a right angled triangle with hypotenuse $AB$ and $P$ be a point on the shorter arc $AC$ of the circumcircle of triangle $ABC$. The line, perpendicuar to $CP$ and passing through $C$, intersects $AP$, $BP$ at points $K$ and $L$ respectively. Prove that the ratio of area of triangles $BKL$ and $ACP$ is independent of the position of point $P$.
1997 Junior Balkan MO, 1
Show that given any 9 points inside a square of side 1 we can always find 3 which form a triangle with area less than $\frac 18$.
[i]Bulgaria[/i]
1959 Czech and Slovak Olympiad III A, 3
Consider a piece of material in the shape of a right circular conical frustum with radii $R,r,R>r$. A cavity in the shape of another coaxial right circular conical frustum was drilled into the material (see the picture). That way only half of the original volume of material remained. Compute radii $R',r'$ of the cavity. Decide for which ratio $R/r$ the problem has a solution.
[img]https://cdn.artofproblemsolving.com/attachments/b/f/12f579458b7cf0fc31849b319e6f58e50b0363.png[/img]