Found problems: 25757
2015 Princeton University Math Competition, A1/B3
For her daughter’s $12\text{th}$ birthday, Ingrid decides to bake a dodecagon pie in celebration. Unfortunately, the store does not sell dodecagon shaped pie pans, so Ingrid bakes a circular pie first and then trims off the sides in a way such that she gets the largest regular dodecagon possible. If the original pie was $8$ inches in diameter, the area of pie that she has to trim off can be represented in square inches as $a\pi - b$ where $a, b$ are integers. What is $a + b$?
2013 India IMO Training Camp, 2
In a triangle $ABC$ with $B = 90^\circ$, $D$ is a point on the segment $BC$ such that the inradii of triangles $ABD$ and $ADC$ are equal. If $\widehat{ADB} = \varphi$ then prove that $\tan^2 (\varphi/2) = \tan (C/2)$.
JOM 2015 Shortlist, G1
Given a triangle $ABC$, and let $ E $ and $ F $ be the feet of altitudes from vertices $ B $ and $ C $ to the opposite sides. Denote $ O $ and $ H $ be the circumcenter and orthocenter of triangle $ ABC $. Given that $ FA=FC $, prove that $ OEHF $ is a parallelogram.
1982 Vietnam National Olympiad, 3
Let $ABCDA'B'C'D'$ be a cube (where $ABCD$ and $A'B'C'D'$ are faces and $AA',BB',CC',DD'$ are edges). Consider the four lines $AA', BC, D'C'$ and the line joining the midpoints of $BB'$ and $DD'$. Show that there is no line which cuts all the four lines.
2022 Mediterranean Mathematics Olympiad, 4
The triangle $ABC$ is inscribed in a circle $\gamma$ of center $O$, with $AB < AC$ . A point $D$ on the angle bisector of $\angle BAC$ and a point $E$ on segment $BC$ satisfy $OE$ is parallel to $AD$ and $DE \perp BC$. Point $K$ lies on the extension line of $EB$ such that $EA = EK$. A circle pass through points $A,K,D$ meets the extension line of $BC$ at point $P$, and meets the circle of center $O$ at point $Q\ne A$. Prove that the line $PQ$ is tangent to the circle $\gamma$.
2013 Dutch IMO TST, 2
Let $P$ be the point of intersection of the diagonals of a convex quadrilateral $ABCD$.Let $X,Y,Z$ be points on the interior of $AB,BC,CD$ respectively such that $\frac{AX}{XB}=\frac{BY}{YC}=\frac{CZ}{ZD}=2$. Suppose that $XY$ is tangent to the circumcircle of $\triangle CYZ$ and that $Y Z$ is tangent to the circumcircle of $\triangle BXY$.Show that $\angle APD=\angle XYZ$.
2005 Sharygin Geometry Olympiad, 7
Two circles with radii $1$ and $2$ have a common center at the point $O$. The vertex $A$ of the regular triangle $ABC$ lies on the larger circle, and the middpoint of the base $CD$ lies on the smaller one. What can the angle $BOC$ be equal to?
2016 Belarus Team Selection Test, 1
Let $ABC$ be an acute triangle with orthocenter $H$. Let $G$ be the point such that the quadrilateral $ABGH$ is a parallelogram. Let $I$ be the point on the line $GH$ such that $AC$ bisects $HI$. Suppose that the line $AC$ intersects the circumcircle of the triangle $GCI$ at $C$ and $J$. Prove that $IJ = AH$.
2017 Kyiv Mathematical Festival, 5
A triangle $ABC$ is given on the plane, such that all its vertices have integer coordinates. Does there necessarily exist a straight line which intersects the straight lines $AB,$ $BC,$ and $AC$ at three distinct points with integer coordinates?
Brazil L2 Finals (OBM) - geometry, 2002.1
Let $XYZ$ be a right triangle of area $1$ m$^2$ . Consider the triangle $X'Y'Z'$ such that $X'$ is the symmetric of X wrt side $YZ$, $Y'$ is the symmetric of $Y$ wrt side $XZ$ and $Z' $ is the symmetric of $Z$ wrt side $XY$. Calculate the area of the triangle $X'Y'Z'$.
1976 Euclid, 1
Source: 1976 Euclid Part A Problem 1
-----
In the diagram, $ABCD$ and $EFGH$ are similar rectangles. $DK:KC=3:2$. Then rectangle $ABCD:$ rectangle $EFGH$ is equal to
[asy]draw((75,0)--(0,0)--(0,50)--(75,50)--(75,0)--(55,0)--(55,20)--(100,20)--(100,0)--cycle);
draw((55,5)--(60,5)--(60,0));
draw((75,5)--(80,5)--(80,0));
label("A",(0,50),NW);
label("B",(0,0),SW);
label("C",(75,0),SE);
label("D",(75,50),NE);
label("E",(55,20),NW);
label("F",(55,0),SW);
label("G",(100,0),SE);
label("H",(100,20),NE);
label("K",(75,20),NE);[/asy]
$\textbf{(A) } 3:2 \qquad \textbf{(B) } 9:4 \qquad \textbf{(C) } 5:2 \qquad \textbf{(D) } 25:4 \qquad \textbf{(E) } 6:2$
2005 Bulgaria Team Selection Test, 5
Let $ABC$, $AC \not= BC$, be an acute triangle with orthocenter $H$ and incenter $I$. The lines $CH$ and $CI$ meet the circumcircle of $\bigtriangleup ABC$ at points $D$ and $L$, respectively. Prove that $\angle CIH = 90^{\circ}$ if and only if $\angle IDL = 90^{\circ}$
2011 Stars Of Mathematics, 3
The checkered plane is painted black and white, after a chessboard fashion. A polygon $\Pi$ of area $S$ and perimeter $P$ consists of some of these unit squares (i.e., its sides go along the borders of the squares).
Prove the polygon $\Pi$ contains not more than $\dfrac {S} {2} + \dfrac {P} {8}$, and not less than $\dfrac {S} {2} - \dfrac {P} {8}$ squares of a same color.
(Alexander Magazinov)
2010 Paraguay Mathematical Olympiad, 1
The picture below shows the way Juan wants to divide a square field in three regions, so that all three of them share a well at vertex $B$. If the side length of the field is $60$ meters, and each one of the three regions has the same area, how far must the points $M$ and $N$ be from $D$?
Note: the area of each region includes the area the well occupies.
[asy]
pair A=(0,0),B=(60,0),C=(60,-60),D=(0,-60),M=(0,-40),N=(20,-60);
pathpen=black;
D(MP("A",A,W)--MP("B",B,NE)--MP("C",C,SE)--MP("D",D,SW)--cycle);
D(B--MP("M",M,W));
D(B--MP("N",N,S));
D(CR(B,3));[/asy]
2016 CMIMC, 3
Let $ABC$ be a triangle. The angle bisector of $\angle B$ intersects $AC$ at point $P$, while the angle bisector of $\angle C$ intersects $AB$ at a point $Q$. Suppose the area of $\triangle ABP$ is 27, the area of $\triangle ACQ$ is 32, and the area of $\triangle ABC$ is $72$. The length of $\overline{BC}$ can be written in the form $m\sqrt n$ where $m$ and $n$ are positive integers with $n$ as small as possible. What is $m+n$?
2009 Singapore Team Selection Test, 1
Two circles are tangent to each other internally at a point $\ T $. Let the chord $\ AB $ of the larger circle be tangent to the smaller circle at a point $\ P $. Prove that the line $\ TP $ bisects $\ \angle ATB $.
2017 Junior Balkan Team Selection Tests - Moldova, Problem 7
Given is an acute triangle $ABC$ and the median $AM.$ Draw $BH\perp AC.$ The line which goes through $A$ and is perpendicular to $AM$ intersects $BH$ at $E.$ On the opposite ray of the ray $AE$ choose $F$ such that $AE=AF.$ Prove that $CF\perp AB.$
1991 Polish MO Finals, 2
Two noncongruent circles $k_1$ and $k_2$ are exterior to each other. Their common tangents intersect the line through their centers at points $A$ and $B$. Let $P$ be any point of $k_1$. Prove that there is a diameter of $k_2$ with one endpoint on line $PA$ and the other on $PB$.
2024-25 IOQM India, 22
In a triangle $ABC$, $\angle BAC = 90^{\circ}$. Let $D$ be the point on $BC$ such that $AB + BD = AC + CD$. Suppose $BD : DC = 2:1$. if $\frac{AC}{AB} = \frac{m + \sqrt{p}}{n}$, Where $m,n$ are relatively prime positive integers and $p$ is a prime number, determine the value of $m+n+p$.
2025 JBMO TST - Turkey, 7
$ABCDE$ is a pentagon whose vertices lie on circle $\omega$ where $\angle DAB=90^{\circ}$. Let $EB$ and $AC$ intersect at $F$, $EC$ meet $BD$ at $G$. $M$ is the midpoint of arc $AB$ on $\omega$, not containing $C$. If $FG\parallel DE\parallel CM$ holds, then what is the value of $\frac{|GE|}{|GD|}$?
2020 AIME Problems, 1
In $\triangle ABC$ with $AB=AC$, point $D$ lies strictly between $A$ and $C$ on side $\overline{AC}$, and point $E$ lies strictly between $A$ and $B$ on side $\overline{AB}$ such that $AE=ED=DB=BC$. The degree measure of $\angle ABC$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
Ukraine Correspondence MO - geometry, 2019.11
Let $O$ be the center of the circle circumscribed around the acute triangle $ABC$, and let $N$ be the midpoint of the arc $ABC$ of this circle. On the sides $AB$ and $BC$ mark points $D$ and $E$ respectively, such that the point $O$ lies on the segment $DE$. The lines $DN$ and $BC$ intersect at the point $P$, and the lines $EN$ and $AB$ intersect at the point $Q$. Prove that $PQ \perp AC$.
2009 District Olympiad, 3
Consider the regular quadrilateral prism $ABCDA'B'C 'D'$, in which $AB = a,AA' = \frac{a \sqrt {2}}{2}$, and $M$ is the midpoint of $B' C'$. Let $F$ be the foot of the perpendicular from $B$ on line $MC$, Let determine the measure of the angle between the planes $(BDF)$ and $(HBS)$.
2015 Canadian Mathematical Olympiad Qualification, 6
Let $\triangle ABC$ be a right-angled triangle with $\angle A = 90^{\circ}$, and $AB < AC$. Let points $D, E, F$ be located on side $BC$ such that $AD$ is the altitude, $AE$ is the internal angle bisector, and $AF$ is the median.
Prove that $3AD + AF > 4AE$.
2011 Belarus Team Selection Test, 2
Two different points $X,Y$ are marked on the side $AB$ of a triangle $ABC$ so that $\frac{AX \cdot BX}{CX^2}=\frac{AY \cdot BY}{CY^2}$ . Prove that $\angle ACX=\angle BCY$.
I.Zhuk