This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2014 Mid-Michigan MO, 7-9

[b]p1.[/b] (a) Put the numbers $1$ to $6$ on the circle in such way that for any five consecutive numbers the sum of first three (clockwise) is larger than the sum of remaining two. (b) Can you arrange these numbers so it works both clockwise and counterclockwise. [b]p2.[/b] A girl has a box with $1000$ candies. Outside the box there is an infinite number of chocolates and muffins. A girl may replace: $\bullet$ two candies in the box with one chocolate bar, $\bullet$ two muffins in the box with one chocolate bar, $\bullet$ two chocolate bars in the box with one candy and one muffin, $\bullet$ one candy and one chocolate bar in the box with one muffin, $\bullet$ one muffin and one chocolate bar in the box with one candy. Is it possible that after some time it remains only one object in the box? [b]p3.[/b] Find any integer solution of the puzzle: $WE+ST+RO+NG=128$ (different letters mean different digits between $1$ and $9$). [b]p4.[/b] Two consecutive three‐digit positive integer numbers are written one after the other one. Show that the six‐digit number that is obtained is not divisible by $1001$. [b]p5.[/b] There are $9$ straight lines drawn in the plane. Some of them are parallel some of them intersect each other. No three lines do intersect at one point. Is it possible to have exactly $17$ intersection points? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

Ukraine Correspondence MO - geometry, 2021.7

Let $I$ be the center of a circle inscribed in triangle $ABC$, in which $\angle BAC = 60 ^o$ and $AB \ne AC$. The points $D$ and $E$ were marked on the rays $BA$ and $CA$ so that $BD = CE = BC$. Prove that the line $DE$ passes through the point $I$.

2014 Miklós Schweitzer, 10

To each vertex of a given triangulation of the two-dimensional sphere, we assign a convex subset of the plane. Assume that the three convex sets corresponding to the three vertices of any two-dimensional face of the triangulation have at least one point in common. Show that there exist four vertices such that the corresponding convex sets have at least one point in common.

2025 Harvard-MIT Mathematics Tournament, 10

Tags: geometry
A plane $\mathcal{P}$ intersects a rectangular prism at a hexagon which has side lengths $45, 66, 63, 55, 54,$ and $77,$ in that order. Compute the distance from the center of the rectangular prism to $\mathcal{P}.$

1999 Harvard-MIT Mathematics Tournament, 4

Tags: geometry
A cross-section of a river is a trapezoid with bases $10$ and $16$ and slanted sides of length $5$. At this section the water is flowing at $\pi$ mph. A little ways downstream is a dam where the water flows through $4$ identical circular holes at $16$ mph. What is the radius of the holes?

2017 Dutch Mathematical Olympiad, 2

A parallelogram $ABCD$ with $|AD| =|BD|$ has been given. A point $E$ lies on line segment $|BD|$ in such a way that $|AE| = |DE|$. The (extended) line $AE$ intersects line segment $BC$ in $F$. Line $DF$ is the angle bisector of angle $CDE$. Determine the size of angle $ABD$. [asy] unitsize (3 cm); pair A, B, C, D, E, F; D = (0,0); A = dir(250); B = dir(290); C = B + D - A; E = extension((A + D)/2, (A + D)/2 + rotate(90)*(A - D), B, D); F = extension(A, E, B, C); draw(A--B--C--D--cycle); draw(A--F--D--B); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, NE); dot("$D$", D, NW); dot("$E$", E, S); dot("$F$", F, SE); [/asy]

1997 Israel Grosman Mathematical Olympiad, 4

Prove that if two altitudes of a tetrahedron intersect, then so do the other two altitudes.

2015 Chile National Olympiad, 1

On the plane, there is drawn a parallelogram $P$ and a point $X$ outside of $P$. Using only an ungraded rule, determine the point $W$ that is symmetric to $X$ with respect to the center $O$ of $P$.

2018 Thailand TST, 2

In triangle $ABC$, let $\omega$ be the excircle opposite to $A$. Let $D, E$ and $F$ be the points where $\omega$ is tangent to $BC, CA$, and $AB$, respectively. The circle $AEF$ intersects line $BC$ at $P$ and $Q$. Let $M$ be the midpoint of $AD$. Prove that the circle $MPQ$ is tangent to $\omega$.

1976 Chisinau City MO, 123

Five points are given on the plane. Prove that among all the triangles with vertices at these points there are no more than seven acute-angled ones.

Estonia Open Senior - geometry, 2006.2.3

Tags: geometry
Four points $ A, B, C, D$ are chosen on a circle in such a way that arcs $ AB, BC,$ and $ CD$ are of the same length and the $ arc DA$ is longer than these three. Line $ AD$ and the line tangent to the circle at $ B$ intersect at $ E$. Let $ F$ be the other endpoint of the diameter starting at $ C$ of the circle. Prove that triangle $ DEF$ is equilateral.

2020 IOM, 1

In a triangle $ABC$ with a right angle at $C$, the angle bisector $AL$ (where $L$ is on segment $BC$) intersects the altitude $CH$ at point $K$. The bisector of angle $BCH$ intersects segment $AB$ at point $M$. Prove that $CK=ML$

May Olympiad L1 - geometry, 2003.2

The triangle $ABC$ is right in $A$ and $R$ is the midpoint of the hypotenuse $BC$ . On the major leg $AB$ the point $P$ is marked such that $CP = BP$ and on the segment $BP$ the point $Q$ is marked such that the triangle $PQR$ is equilateral. If the area of triangle $ABC$ is $27$, calculate the area of triangle $PQR$ .

2015 India PRMO, 16

$16.$ In an acute angle triangle $ABC,$ let $D$ be the foot of the altitude from $A,$ and $E$ be the midpoint of $BC.$ Let $F$ be the midpoint of $AC.$ Suppose $\angle{BAE}=40^o. $ If $\angle{DAE}=\angle{DFE},$ What is the magnitude of $\angle{ADF}$ in degrees $?$

2002 Korea - Final Round, 2

Let $ABC$ be an acute triangle and let $\omega$ be its circumcircle. Let the perpendicular line from $A$ to $BC$ meet $\omega$ at $D$. Let $P$ be a point on $\omega$, and let $Q$ be the foot of the perpendicular line from $P$ to the line $AB$. Prove that if $Q$ is on the outside of $\omega$ and $2\angle QPB = \angle PBC$, then $D,P,Q$ are collinear.

1989 Tournament Of Towns, (222) 6

We are given $101$ rectangles with sides of integer lengths not exceeding $100$ . Prove that among these $101$ rectangles there are $3$ rectangles, say $A , B$ and $C$ such that $A$ will fit inside $B$ and $B$ inside $C$. ( N . Sedrakyan, Yerevan)

2019 SG Originals, Q3

Tags: geometry
Let $ABC$ be a triangle where $AC > AB$ and $I$ is its incentre. Let $M$ be the midpoint of arc $BAC$. Let $MI$ meet $AB$ at $T$. Let the incircle of $ABC$ meet $BC$ at $D$. Show that $B,I,C,T$ are concyclic if and only if $CD =3BD$.

2001 JBMO ShortLists, 8

Prove that no three points with integer coordinates can be the vertices of an equilateral triangle.

2017 Indonesia Juniors, day 1

p1. Find all real numbers $x$ that satisfy the inequality $$\frac{x^2-3}{x^2-1}+ \frac{x^2 + 5}{x^2 + 3} \ge \frac{x^2-5}{x^2-3}+\frac{x^2 + 3}{x^2 + 1}$$ p2. It is known that $m$ is a four-digit natural number with the same units and thousands digits. If $m$ is a square of an integer, find all possible numbers $m$. p3. In the following figure, $\vartriangle ABP$ is an isosceles triangle, with $AB = BP$ and point $C$ on $BP$. Calculate the volume of the object obtained by rotating $ \vartriangle ABC$ around the line $AP$ [img]https://cdn.artofproblemsolving.com/attachments/c/a/65157e2d49d0d4f0f087f3732c75d96a49036d.png[/img] p4. A class farewell event is attended by $10$ male students and $ 12$ female students. Homeroom teacher from the class provides six prizes to randomly selected students. Gifts that provided are one school bag, two novels, and three calculators. If the total students The number of male students who received prizes was equal to the total number of female students who received prizes. How many possible arrangements are there of the student who gets the prize? p5. It is known that $S =\{1945, 1946, 1947, ..., 2016, 2017\}$. If $A = \{a, b, c, d, e\}$ a subset of $S$ where $a + b + c + d + e$ is divisible by $5$, find the number of possible $A$'s.

2002 Romania Team Selection Test, 1

Let $ABCDE$ be a cyclic pentagon inscribed in a circle of centre $O$ which has angles $\angle B=120^{\circ},\angle C=120^{\circ},$ $\angle D=130^{\circ},\angle E=100^{\circ}$. Show that the diagonals $BD$ and $CE$ meet at a point belonging to the diameter $AO$. [i]Dinu Șerbănescu[/i]

2019 Purple Comet Problems, 13

Tags: geometry
Squares $ABCD$ and $AEFG$ each with side length $12$ overlap so that $\vartriangle AED$ is an equilateral triangle as shown. The area of the region that is in the interior of both squares which is shaded in the diagram is $m\sqrt{n}$, where $m$ and $n$ are positive integers, and $n$ is not divisible by the square of any prime. Find $m + n$. [img]https://cdn.artofproblemsolving.com/attachments/c/2/a2f8d2a090a6342610c43b3fed8a87fa5d7f03.png[/img]

2007 AMC 12/AHSME, 6

Triangle $ ABC$ has side lengths $ AB \equal{} 5$, $ BC \equal{} 6$, and $ AC \equal{} 7$. Two bugs start simultaneously from $ A$ and crawl along the sides of the triangle in opposite directions at the same speed. They meet at point $ D$. What is $ BD$? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5$

2020 European Mathematical Cup, 1

Let $ABCD$ be a parallelogram such that $|AB| > |BC|$. Let $O$ be a point on the line $CD$ such that $|OB| = |OD|$. Let $\omega$ be a circle with center $O$ and radius $|OC|$. If $T$ is the second intersection of $\omega$ and $CD$, prove that $AT, BO$ and $\omega$ are concurrent. [i]Proposed by Ivan Novak[/i]

2014 Cezar Ivănescu, 3

[b]a)[/b] Prove that, for any point in the interior of a triangle, there are two points on the sides of this triangle such that the resultant of the vectors from the interior point those two points is the vector $ 0. $ [b]b)[/b] Prove that, for any point in the interior of a triangle, there are three points on the sides of this triangle such that the resultant of the vectors from the interior point those three points is the vector $ 0. $

2014 Online Math Open Problems, 1

Carl has a rectangle whose side lengths are positive integers. This rectangle has the property that when he increases the width by 1 unit and decreases the length by 1 unit, the area increases by $x$ square units. What is the smallest possible positive value of $x$? [i]Proposed by Ray Li[/i]