This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1990 Hungary-Israel Binational, 2

Let $ ABC$ be a triangle where $ \angle ACB\equal{}90^{\circ}$. Let $ D$ be the midpoint of $ BC$ and let $ E$, and $ F$ be points on $ AC$ such that $ CF\equal{}FE\equal{}EA$. The altitude from $ C$ to the hypotenuse $ AB$ is $ CG$, and the circumcentre of triangle $ AEG$ is $ H$. Prove that the triangles $ ABC$ and $ HDF$ are similar.

1940 Moscow Mathematical Olympiad, 061

Tags: locus , distance , geometry
Given two lines on a plane, find the locus of all points with the difference between the distance to one line and the distance to the other equal to the length of a given segment.

1994 Denmark MO - Mohr Contest, 4

In a right-angled triangle in which all side lengths are integers, one has a cathetus length $1994$. Determine the length of the hypotenuse.

2020 IMO Shortlist, G3

Tags: geometry
Let $ABCD$ be a convex quadrilateral with $\angle ABC>90$, $CDA>90$ and $\angle DAB=\angle BCD$. Denote by $E$ and $F$ the reflections of $A$ in lines $BC$ and $CD$, respectively. Suppose that the segments $AE$ and $AF$ meet the line $BD$ at $K$ and $L$, respectively. Prove that the circumcircles of triangles $BEK$ and $DFL$ are tangent to each other. $\emph{Slovakia}$

2014 PUMaC Geometry B, 2

Consider the pyramid $OABC$. Let the equilateral triangle $ABC$ with side length $6$ be the base. Also $9=OA=OB=OC$. Let $M$ be the midpoint of $AB$. Find the square of the distance from $M$ to $OC$.

2010 Sharygin Geometry Olympiad, 7

Each of two regular polyhedrons $P$ and $Q$ was divided by the plane into two parts. One part of $P$ was attached to one part of $Q$ along the dividing plane and formed a regular polyhedron not equal to $P$ and $Q$. How many faces can it have?

1982 Putnam, B6

Denote by $S(a,b,c)$ the area of a triangle whose lengthes of three sides are $a,b,c$ Prove that for any positive real numbers $a_{1},b_{1},c_{1}$ and $a_{2},b_{2},c_{2}$ which can serve as the lengthes of three sides of two triangles respectively ,we have $ \sqrt{S(a_{1},b_{1},c_{1})}+\sqrt{S(a_{2},b_{2},c_{2})}\le\sqrt{S(a_{1}+a_{2},b_{1}+b_{2},c_{1}+c_{2})}$

2005 German National Olympiad, 5

[b](a)[/b] [Problem for class 11] Let r be the inradius and $r_a$, $r_b$, $r_c$ the exradii of a triangle ABC. Prove that $\frac{1}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}$. [b](b)[/b] [Problem for classes 12/13] Let r be the radius of the insphere and let $r_a$, $r_b$, $r_c$, $r_d$ the radii of the four exspheres of a tetrahedron ABCD. (An [i]exsphere[/i] of a tetrahedron is a sphere touching one sideface and the extensions of the three other sidefaces.) Prove that $\frac{2}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}+\frac{1}{r_d}$. I am really sorry for posting these, but else, Orl will probably post them. This time, we really did not have any challenging problem on the DeMO. But at least, the problems were simple enough that I solved all of them. ;) Darij

Kvant 2020, M2621

Tags: excircle , geometry
Consider a triangle $ABC$ in which $AB<BC<CA$. The excircles touch the sides $BC, CA,$ and $AB$ at points $A_1, B_1$ and $C_1$ respectively. A circle is drawn through the points $A_1, B_1$ and $C_1$ which intersects the sides $BC, CA$ and $AB$ for the second time at the points $A_2, B_2$ and $C_2$ respectively. On which side of the triangle can lie the largest of the segments $A_1A_2, B_1B_2$ and $C_1C_2$? [i]Proposed by I. Weinstein[/i]

1987 Bundeswettbewerb Mathematik, 3

Prove that for every convex polygon, we can choose three of its consecutive vertices, such that the circle, defined by them, covers the the entire polygon. (proposed by J. Tabov)

1997 Czech And Slovak Olympiad IIIA, 6

In a parallelogram $ABCD$, triangle $ABD$ is acute-angled and $\angle BAD = \pi /4$. Consider all possible choices of points $K,L,M,N$ on sides $AB,BC, CD,DA$ respectively, such that $KLMN$ is a cyclic quadrilateral whose circumradius equals those of triangles $ANK$ and $CLM$. Find the locus of the intersection of the diagonals of $KLMN$

2023 All-Russian Olympiad Regional Round, 10.8

The bisector of $\angle BAD$ of a parallelogram $ABCD$ meets $BC$ at $K$. The point $L$ lies on $AB$ such that $AL=CK$. The lines $AK$ and $CL$ meet at $M$. Let $(ALM)$ meet $AD$ after $D$ at $N$. Prove that $\angle CNL=90^{o}$

2012 May Olympiad, 3

Let $ABC$ be a triangle such that $\angle{ABC} = 2\angle{BCA}$ and $\angle{CAB}>90^\circ$. Let $M$ be the midpoint of $BC$. The line perpendicular to $AC$ that passes through $C$ cuts the line $AB$ at point $D$. Show that $\angle{AMB} = \angle{DMC}$.

2014 Dutch BxMO/EGMO TST, 3

Tags: geometry
In triangle $ABC$, $I$ is the centre of the incircle. There is a circle tangent to $AI$ at $I$ which passes through $B$. This circle intersects $AB$ once more in $P$ and intersects $BC$ once more in $Q$. The line $QI$ intersects $AC$ in $R$. Prove that $|AR|\cdot |BQ|=|P I|^2$

2009 Ukraine National Mathematical Olympiad, 3

Point $O$ is inside triangle $ABC$ such that $\angle AOB = \angle BOC = \angle COA = 120^\circ .$ Prove that \[\frac{AO^2}{BC}+\frac{BO^2}{CA}+\frac{CO^2}{AB} \geq \frac{AO+BO+CO}{\sqrt 3}.\]

2008 Germany Team Selection Test, 2

Let $ ABC$ be a fixed triangle, and let $ A_1$, $ B_1$, $ C_1$ be the midpoints of sides $ BC$, $ CA$, $ AB$, respectively. Let $ P$ be a variable point on the circumcircle. Let lines $ PA_1$, $ PB_1$, $ PC_1$ meet the circumcircle again at $ A'$, $ B'$, $ C'$, respectively. Assume that the points $ A$, $ B$, $ C$, $ A'$, $ B'$, $ C'$ are distinct, and lines $ AA'$, $ BB'$, $ CC'$ form a triangle. Prove that the area of this triangle does not depend on $ P$. [i]Author: Christopher Bradley, United Kingdom [/i]

2000 Chile National Olympiad, 4

Tags: geometry , angle
Let $ AD $ be the bisector of a triangle $ ABC $ $ (D \in BC) $ such that $ AB + AD = CD $ and $ AC + AD = BC $. Determine the measure of the angles of $ \vartriangle ABC $

2019 Polish Junior MO Second Round, 2.

Let $ABCD$ be the trapezium with bases $AB$ and $CD$, such that $\sphericalangle ABC = 90^{\circ}$. The bisector of angle $BAD$ intersects the segment $BC$ in the point $P$. Show that if $\sphericalangle APD = 45^{\circ}$, then area of quadrilateral $APCD$ is equal to the area of the triangle $ABP$.

2014 Sharygin Geometry Olympiad, 3

An acute angle $A$ and a point $E$ inside it are given. Construct points $B, C$ on the sides of the angle such that $E$ is the center of the Euler circle of triangle $ABC$. (E. Diomidov)

2012 Czech-Polish-Slovak Junior Match, 1

Point $P$ lies inside the triangle $ABC$. Points $K, L, M$ are symmetrics of point $P$ wrt the midpoints of the sides $BC, CA, AB$. Prove that the straight $AK, BL, CM$ intersect at one point.

2015 Belarus Team Selection Test, 3

Tags: geometry
Consider a fixed circle $\Gamma$ with three fixed points $A, B,$ and $C$ on it. Also, let us fix a real number $\lambda \in(0,1)$. For a variable point $P \not\in\{A, B, C\}$ on $\Gamma$, let $M$ be the point on the segment $CP$ such that $CM =\lambda\cdot CP$ . Let $Q$ be the second point of intersection of the circumcircles of the triangles $AMP$ and $BMC$. Prove that as $P$ varies, the point $Q$ lies on a fixed circle. [i]Proposed by Jack Edward Smith, UK[/i]

2007 Junior Balkan Team Selection Tests - Romania, 1

Tags: geometry
Let $ABC$ a triangle and $M,N,P$ points on $AB,BC$, respective $CA$, such that the quadrilateral $CPMN$ is a paralelogram. Denote $R \in AN \cap MP$, $S \in BP \cap MN$, and $Q \in AN \cap BP$. Prove that $[MRQS]=[NQP]$.

2006 Pan African, 6

Let $ABC$ be a right angled triangle at $A$. Denote $D$ the foot of the altitude through $A$ and $O_1, O_2$ the incentres of triangles $ADB$ and $ADC$. The circle with centre $A$ and radius $AD$ cuts $AB$ in $K$ and $AC$ in $L$. Show that $O_1, O_2, K$ and $L$ are on a line.

2012 Mid-Michigan MO, 10-12

[b]p1.[/b] A triangle $ABC$ is drawn in the plane. A point $D$ is chosen inside the triangle. Show that the sum of distances $AD+BD+CD$ is less than the perimeter of the triangle. [b]p2.[/b] In a triangle $ABC$ the bisector of the angle $C$ intersects the side $AB$ at $M$, and the bisector of the angle $A$ intersects $CM$ at the point $T$. Suppose that the segments $CM$ and $AT$ divided the triangle $ABC$ into three isosceles triangles. Find the angles of the triangle $ABC$. [b]p3.[/b] You are given $100$ weights of masses $1, 2, 3,..., 99, 100$. Can one distribute them into $10$ piles having the following property: the heavier the pile, the fewer weights it contains? [b]p4.[/b] Each cell of a $10\times 10$ table contains a number. In each line the greatest number (or one of the largest, if more than one) is underscored, and in each column the smallest (or one of the smallest) is also underscored. It turned out that all of the underscored numbers are underscored exactly twice. Prove that all numbers stored in the table are equal to each other. [b]p5.[/b] Two stores have warehouses in which wheat is stored. There are $16$ more tons of wheat in the first warehouse than in the second. Every night exactly at midnight the owner of each store steals from his rival, taking a quarter of the wheat in his rival's warehouse and dragging it to his own. After $10$ days, the thieves are caught. Which warehouse has more wheat at this point and by how much? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1916 Eotvos Mathematical Competition, 2

Let the bisector of the angle at $C$ of triangle $ABC$ intersect side $AB$ in point $D$. Show that the segment $CD$ is shorter than the geometric mean of the sides $CA$ and $CB$. (The geometric mean of two positive numbers is the square root of their product; the geometric mean of $n$ numbers is the $n$-th root of their product.