This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

1986 Greece Junior Math Olympiad, 2

Tags: geometry
Let $ABC$ be a triangle. α) If point $D$ lies on side $BC$, prove that $AD<AB$ or $AD <AC$ β) If point $E$ lies on side $AB$ and point $Z$ lies on side $AC$, prove that line segment is $EZ$ less than largest side of the triangle $ABC$.

1995 All-Russian Olympiad Regional Round, 10.3

Tags: tangent , median , geometry
In an acute-angled triangle $ABC$, the circle $S$ with the altitude $BK$ as the diameter intersects $AB$ at $E$ and $BC$ at $F$. Prove that the tangents to $S$ at $E$ and $F$ meet on the median from $B$.

2012 BMT Spring, round 4

[b]p1.[/b] Denote $S_n = 1 + \frac12 + \frac13 + ...+ \frac{1}{n}$. What is $144169\cdot S_{144169} - (S_1 + S_2 + ... + S_{144168})$? [b]p2.[/b] Let $A,B,C$ be three collinear points, with $AB = 4$, $BC = 8$, and $AC = 12$. Draw circles with diameters $AB$, $BC$, and $AC$. Find the radius of the two identical circles that will lie tangent to all three circles. [b]p3.[/b] Let $s(i)$ denote the number of $1$’s in the binary representation of $i$. What is $$\sum_{x=1}{314}\left( \sum_{i=0}^{2^{576}-2} x^{s(i)} \right) \,\, mod \,\,629 ?$$ [b]p4.[/b] Parallelogram $ABCD$ has an area of $S$. Let $k = 42$. $E$ is drawn on AB such that $AE =\frac{AB}{k}$ . $F$ is drawn on $CD$ such that $CF = \frac{CD}{k}$ . $G$ is drawn on $BC$ such that $BG = \frac{BC}{k}$ . $H$ is drawn on $AD$ such that $DH = \frac{AD}{k}$ . Line $CE$ intersects $BH$ at $M$, and $DG$ at $N$. Line $AF$ intersects $DG$ at $P$, and $BH$ at $Q$. If $S_1$ is the area of quadrilateral $MNPQ$, find $\frac{S_1}{S}$. [b]p5.[/b] Let $\phi$ be the Euler totient function. What is the sum of all $n$ for which $\frac{n}{\phi(n)}$ is maximal for $1 \le n \le 500$? [b]p6.[/b] Link starts at the top left corner of an $12 \times 12$ grid and wants to reach the bottom right corner. He can only move down or right. A turn is defined a down move immediately followed by a right move, or a right move immediately followed by a down move. Given that he makes exactly $6$ turns, in how many ways can he reach his destination? PS. You had better use hide for answers.

2012 BMT Spring, round 3

[b]p1.[/b] Let $A(S)$ denote the average value of a set $S$. Let $T$ be the set of all subsets of the set $\{1, 2, 3, 4, ... , 2012\}$, and let $R$ be $\{A(K)|K \in T \}$. Compute $A(R)$. [b]p2.[/b] Consider the minute and hour hands of the Campanile, our clock tower. During one single day ($12:00$ AM - $12:00$ AM), how many times will the minute and hour hands form a right-angle at the center of the clock face? [b]p3.[/b] In a regular deck of $52$ face-down cards, Billy flips $18$ face-up and shuffles them back into the deck. Before giving the deck to Penny, Billy tells her how many cards he has flipped over, and blindfolds her so she can’t see the deck and determine where the face-up cards are. Once Penny is given the deck, it is her job to split the deck into two piles so that both piles contain the same number of face-up cards. Assuming that she knows how to do this, how many cards should be in each pile when he is done? [b]p4.[/b] The roots of the equation $x^3 + ax^2 + bx + c = 0$ are three consecutive integers. Find the maximum value of $\frac{a^2}{b+1}$. [b]p5.[/b] Oski has a bag initially filled with one blue ball and one gold ball. He plays the following game: first, he removes a ball from the bag. If the ball is blue, he will put another blue ball in the bag with probability $\frac{1}{437}$ and a gold ball in the bag the rest of the time. If the ball is gold, he will put another gold ball in the bag with probability $\frac{1}{437}$ and a blue ball in the bag the rest of the time. In both cases, he will put the ball he drew back into the bag. Calculate the expected number of blue balls after $525600$ iterations of this game. [b]p6.[/b] Circles $A$ and $B$ intersect at points $C$ and $D$. Line $AC$ and circle $B$ meet at $E$, line $BD$ and circle $A$ meet at $F$, and lines $EF$ and $AB$ meet at $G$. If $AB = 10$, $EF = 4$, $FG = 8$, find $BG$. PS. You had better use hide for answers.

2013 Harvard-MIT Mathematics Tournament, 16

The walls of a room are in the shape of a triangle $ABC$ with $\angle ABC = 90^\circ$, $\angle BAC = 60^\circ$, and $AB=6$. Chong stands at the midpoint of $BC$ and rolls a ball toward $AB$. Suppose that the ball bounces off $AB$, then $AC$, then returns exactly to Chong. Find the length of the path of the ball.

2022 Girls in Math at Yale, R6

[b]p16[/b] Madelyn is being paid $\$50$/hour to find useful [i]Non-Functional Trios[/i], where a Non-Functional Trio is defined as an ordered triple of distinct real numbers $(a, b, c)$, and a Non- Functional Trio is [i]useful [/i] if $(a, b)$, $(b, c)$, and $(c, a)$ are collinear in the Cartesian plane. Currently, she’s working on the case $a+b+c = 2022$. Find the number of useful Non-Functional Trios $(a, b, c)$ such that $a + b + c = 2022$. [b]p17[/b] Let $p(x) = x^2 - k$, where $k$ is an integer strictly less than $250$. Find the largest possible value of k such that there exist distinct integers $a, b$ with $p(a) = b$ and $p(b) = a$. [b]p18[/b] Let $ABC$ be a triangle with orthocenter $H$ and circumcircle $\Gamma$ such that $AB = 13$, $BC = 14$, and $CA = 15$. $BH$ and $CH$ meet $\Gamma$ again at points $D$ and $E$, respectively, and $DE$ meets $AB$ and $AC$ at $F$ and $G$, respectively. The circumcircles of triangles $ABG$ and $ACF$ meet BC again at points $P$ and $Q$. If $PQ$ can be expressed as $\frac{a}{b}$ for positive integers $a, b$ with $gcd (a, b) = 1$, find $a + b$.

2008 Indonesia TST, 3

Tags: geometry
Let $ABCD$ be a convex quadrilateral with $AB$ is not parallel to $CD$ Circle $\Gamma_{1}$ with center $O_1$ passes through $A$ and $B$, and touches segment $CD$ at $P$. Circle $\Gamma_{2}$ with center $O_2$ passes through $C$ and $D$, and touches segment $AB$ at $Q$. Let $E$ and $F$ be the intersection of circles $\Gamma_{1}$ and $\Gamma_{2}$. Prove that $EF$ bisects segment $PQ$ if and only if $BC$ is parallel to $AD$.

1968 Spain Mathematical Olympiad, 3

Tags: circles , square , geometry
Given a square whose side measures $a$, consider the set of all points of its plane through which passes a circumference of radius whose circle contains to the quoted square. You are asked to prove that the contour of the figure formed by the points with this property is formed by arcs of circumference, and determine the positions, their centers, their radii and their lengths.

2016 CMIMC, 10

Let $\triangle ABC$ be a triangle with circumcircle $\Omega$ and let $N$ be the midpoint of the major arc $\widehat{BC}$. The incircle $\omega$ of $\triangle ABC$ is tangent to $AC$ and $AB$ at points $E$ and $F$ respectively. Suppose point $X$ is placed on the same side of $EF$ as $A$ such that $\triangle XEF\sim\triangle ABC$. Let $NX$ intersect $BC$ at a point $P$. Given that $AB=15$, $BC=16$, and $CA=17$, compute $\tfrac{PX}{XN}$.

2015 USAJMO, 5

Let $ABCD$ be a cyclic quadrilateral. Prove that there exists a point $X$ on segment $\overline{BD}$ such that $\angle BAC=\angle XAD$ and $\angle BCA=\angle XCD$ if and only if there exists a point $Y$ on segment $\overline{AC}$ such that $\angle CBD=\angle YBA$ and $\angle CDB=\angle YDA$.

2010 Contests, 1

Tags: geometry
Let $CD$ be a chord of a circle $\Gamma_1$ and $AB$ a diameter of $\Gamma_1$ perpendicular to $CD$ at $N$ with $AN > NB$. A circle $\Gamma_2$ centered at $C$ with radius $CN$ intersects $\Gamma_1$ at points $P$ and $Q$. The line $PQ$ intersects $CD$ at $M$ and $AC$ at $K$; and the extension of $NK$ meets $\Gamma_2$ at $L$. Prove that $PQ$ is perpendicular to $AL$

1955 Poland - Second Round, 5

Given a triangle $ ABC $. Find the rectangle of smallest area containing the triangle.

2010 India IMO Training Camp, 9

Let $A=(a_{jk})$ be a $10\times 10$ array of positive real numbers such that the sum of numbers in row as well as in each column is $1$. Show that there exists $j<k$ and $l<m$ such that \[a_{jl}a_{km}+a_{jm}a_{kl}\ge \frac{1}{50}\]

2017 IFYM, Sozopol, 8

Tags: geometry
Let $\Delta ABC$ be a scalene triangle with center $I$ of its inscribed circle. Points $A_1$,$B_1$, and $C_1$ are the points of tangency of the same circle with $BC$,$CA$, and $AB$ respectively. Prove that the circumscribed circles of $\Delta AIA_1$,$\Delta BIB_1$, and $\Delta CIC_1$ intersect in a common point, different from $I$.

2014 Thailand TSTST, 2

In a triangle $ABC$, the incircle with incenter $I$ is tangent to $BC$ at $A_1, CA$ at $B_1$, and $AB$ at $C_1$. Denote the intersection of $AA_1$ and $BB_1$ by $G$, the intersection of $AC$ and $A_1C_1$ by $X$, and the intersection of $BC$ and $B_1C_1$ by $Y$ . Prove that $IG \perp XY$ .

2022 Israel TST, 1

Tags: incenter , geometry
A triangle $ABC$ with orthocenter $H$ is given. $P$ is a variable point on line $BC$. The perpendicular to $BC$ through $P$ meets $BH$, $CH$ at $X$, $Y$ respectively. The line through $H$ parallel to $BC$ meets $AP$ at $Q$. Lines $QX$ and $QY$ meet $BC$ at $U$, $V$ respectively. Find the shape of the locus of the incenters of the triangles $QUV$.

1964 Bulgaria National Olympiad, Problem 3

Tags: locus , geometry
There are given two intersecting lines $g_1,g_2$ and a point $P$ in their plane such that $\angle(g1,g2)\ne90^\circ$. Its symmetrical points on any point $M$ in the same plane with respect to the given lines are $M_1$ and $M_2$. Prove that: (a) the locus of the point $M$ for which the points $M_1,M_2$ and $P$ lie on a common line is a circle $k$ passing through the intersection point of $g_1$ and $g_2$. (b) the point $P$ is an orthocenter of a triangle, inscribed in the circle $k$ whose sides lie at the lines $g_1$ and $g_2$.

2013 Sharygin Geometry Olympiad, 14

Let $M$, $N$ be the midpoints of diagonals $AC$, $BD$ of a right-angled trapezoid $ABCD$ ($\measuredangle A=\measuredangle D = 90^\circ$). The circumcircles of triangles $ABN$, $CDM$ meet the line $BC$ in the points $Q$, $R$. Prove that the distances from $Q$, $R$ to the midpoint of $MN$ are equal.

2016 Taiwan TST Round 1, 1

Tags: geometry
Let $AB$ be a chord on a circle $O$, $M$ be the midpoint of the smaller arc $AB$. From a point $C$ outside the circle $O$ draws two tangents to the circle $O$ at the points $S$ and $T$. Suppose $MS$ intersects with $AB$ at the point $E$, $MT$ intersects with $AB$ at the point $F$. From $E,F$ draw a line perpendicular to $AB$ that intersects with $OS,OT$ at the points $X,Y$, respectively. Draw another line from $C$ which intersects with the circle $O$ at the points $P$ and $Q$. Let $R$ be the intersection point of $MP$ and $AB$. Finally, let $Z$ be the circumcenter of triangle $PQR$. Prove that $X$,$Y$ and $Z$ are collinear.

2012 AMC 12/AHSME, 15

Jesse cuts a circular paper disk of radius $12$ along two radii to form two sectors, the smaller having a central angle of $120$ degrees. He makes two circular cones, using each sector to form the lateral surface of a cone. What is the ratio of the volume of the smaller cone to that of the larger? $ \textbf{(A)}\ \frac{1}{8} \qquad\textbf{(B)}\ \frac{1}{4} \qquad\textbf{(C)}\ \frac{\sqrt{10}}{10} \qquad\textbf{(D)}\ \frac{\sqrt{5}}{6} \qquad\textbf{(E)}\ \frac{\sqrt{10}}{5} $

2006 Tuymaada Olympiad, 3

From a $n\times (n-1)$ rectangle divided into unit squares, we cut the [i]corner[/i], which consists of the first row and the first column. (that is, the corner has $2n-2$ unit squares). For the following, when we say [i]corner[/i] we reffer to the above definition, along with rotations and symmetry. Consider an infinite lattice of unit squares. We will color the squares with $k$ colors, such that for any corner, the squares in that corner are coloured differently (that means that there are no squares coloured with the same colour). Find out the minimum of $k$. [i]Proposed by S. Berlov[/i]

1998 South africa National Olympiad, 6

You are given $n$ squares, not necessarily all of the same size, which have total area 1. Is it always possible to place them without overlapping in a square of area 2?

2022 Iran Team Selection Test, 8

In triangle $ABC$, with $AB<AC$, $I$ is the incenter, $E$ is the intersection of $A$-excircle and $BC$. Point $F$ lies on the external angle bisector of $BAC$ such that $E$ and $F$ lieas on the same side of the line $AI$ and $\angle AIF=\angle AEB$. Point $Q$ lies on $BC$ such that $\angle AIQ=90$. Circle $\omega_b$ is tangent to $FQ$ and $AB$ at $B$, circle $\omega_c$ is tangent to $FQ$ and $AC$ at $C$ and both circles pass through the inside of triangle $ABC$. if $M$ is the Midpoint od the arc $BC$, which does not contain $A$, prove that $M$ lies on the radical axis of $\omega_b$ and $\omega_c$. Proposed by Amirmahdi Mohseni

2008 China Girls Math Olympiad, 4

Equilateral triangles $ ABQ$, $ BCR$, $ CDS$, $ DAP$ are erected outside of the convex quadrilateral $ ABCD$. Let $ X$, $ Y$, $ Z$, $ W$ be the midpoints of the segments $ PQ$, $ QR$, $ RS$, $ SP$, respectively. Determine the maximum value of \[ \frac {XZ\plus{}YW}{AC \plus{} BD}. \]

2019 Estonia Team Selection Test, 2

In an acute-angled triangle $ABC$, the altitudes intersect at point $H$, and point $K$ is the foot of the altitude drawn from the vertex $A$. Circle $c$ passing through points $A$ and $K$ intersects sides $AB$ and $AC$ at points $M$ and $N$, respectively. The line passing through point $A$ and parallel to line $BC$ intersects the circumcircles of triangles $AHM$ and $AHN$ for second time, respectively, at points $X$ and $Y$. Prove that $ | X Y | = | BC |$.