This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2003 All-Russian Olympiad, 2

The diagonals of a cyclic quadrilateral $ABCD$ meet at $O$. Let $S_1, S_2$ be the circumcircles of triangles $ABO$ and $CDO$ respectively, and $O,K$ their intersection points. The lines through $O$ parallel to $AB$ and $CD$ meet $S_1$ and $S_2$ again at $L$ and $M$, respectively. Points $P$ and $Q$ on segments $OL$ and $OM$ respectively are taken such that $OP : PL = MQ : QO$. Prove that $O,K, P,Q$ lie on a circle.

Novosibirsk Oral Geo Oly VIII, 2021.2

Tags: angle , geometry
The extensions of two opposite sides of the convex quadrilateral intersect and form an angle of $20^o$ , the extensions of the other two sides also intersect and form an angle of $20^o$. It is known that exactly one angle of the quadrilateral is $80^o$. Find all of its other angles.

1986 AMC 12/AHSME, 3

Tags: geometry
$\triangle ABC$ is a right angle at $C$ and $\angle A = 20^\circ$. If $BD$ is the bisector of $\angle ABC$, then $\angle BDC =$ [asy] size(200); defaultpen(linewidth(0.8)+fontsize(11pt)); pair A= origin, B = 3 * dir(25), C = (B.x,0); pair X = bisectorpoint(A,B,C), D = extension(B,X,A,C); draw(B--A--C--B--D^^rightanglemark(A,C,B,4)); path g = anglemark(A,B,D,14); path h = anglemark(D,B,C,14); draw(g); draw(h); add(pathticks(g,1,0.11,6,6)); add(pathticks(h,1,0.11,6,6)); label("$A$",A,W); label("$B$",B,NE); label("$C$",C,E); label("$D$",D,S); label("$20^\circ$",A,8*dir(12.5)); [/asy] $ \textbf{(A)}\ 40^\circ \qquad \textbf{(B)}\ 45^\circ \qquad \textbf{(C)}\ 50^\circ \qquad \textbf{(D)}\ 55^\circ \qquad \textbf{(E)}\ 60^\circ $

MOAA Gunga Bowls, 2022

[u]Set 1[/u] [b]G1.[/b] The Daily Challenge office has a machine that outputs the number $2.75$ when operated. If it is operated $12$ times, then what is the sum of all $12$ of the machine outputs? [b]G2.[/b] A car traveling at a constant velocity $v$ takes $30$ minutes to travel a distance of $d$. How long does it take, in minutes, for it travel $10d$ with a constant velocity of $2.5v$? [b]G3.[/b] Andy originally has $3$ times as many jelly beans as Andrew. After Andrew steals 15 of Andy’s jelly beans, Andy now only has $2$ times as many jelly beans as Andrew. Find the number of jelly beans Andy originally had. [u]Set 2[/u] [b]G4.[/b] A coin is weighted so that it is $3$ times more likely to come up as heads than tails. How many times more likely is it for the coin to come up heads twice consecutively than tails twice consecutively? [b]G5.[/b] There are $n$ students in an Areteem class. When 1 student is absent, the students can be evenly divided into groups of $5$. When $8$ students are absent, the students can evenly be divided into groups of $7$. Find the minimum possible value of $n$. [b]G6.[/b] Trapezoid $ABCD$ has $AB \parallel CD$ such that $AB = 5$, $BC = 4$ and $DA = 2$. If there exists a point $M$ on $CD$ such that $AM = AD$ and $BM = BC$, find $CD$. [u]Set 3[/u] [b]G7.[/b] Angeline has $10$ coins (either pennies, nickels, or dimes) in her pocket. She has twice as many nickels as pennies. If she has $62$ cents in total, then how many dimes does she have? [b]G8.[/b] Equilateral triangle $ABC$ has side length $6$. There exists point $D$ on side $BC$ such that the area of $ABD$ is twice the area of $ACD$. There also exists point $E$ on segment $AD$ such that the area of $ABE$ is twice the area of $BDE$. If $k$ is the area of triangle $ACE$, then find $k^2$. [b]G9.[/b] A number $n$ can be represented in base $ 6$ as $\underline{aba}_6$ and base $15$ as $\underline{ba}_{15}$, where $a$ and $b$ are not necessarily distinct digits. Find $n$. PS. You should use hide for answers. Sets 4-6 have been posted [url=https://artofproblemsolving.com/community/c3h3131305p28367080]here[/url] and 7-9 [url=https://artofproblemsolving.com/community/c3h3131308p28367095]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2017 NIMO Problems, 5

In triangle $ABC$, $AB=12$, $BC=17$, and $AC=25$. Distinct points $M$ and $N$ lie on the circumcircle of $ABC$ such that $BM=CM$ and $BN=CN$. If $AM + AN = \tfrac{a\sqrt{b}}{c}$, where $a, b, c$ are positive integers such that $\gcd(a, c) = 1$ and $b$ is not divisible by the square of a prime, compute $100a+10b+c$. [i]Proposed by Michael Tang[/i]

2021 Dutch IMO TST, 4

Determine all positive integers $n$ with the following property: for each triple $(a, b, c)$ of positive real numbers there is a triple $(k, \ell, m)$ of non-negative integer numbers so that $an^k$, $bn^{\ell}$ and $cn^m$ are the lengths of the sides of a (non-degenerate) triangle shapes.

2016 Saudi Arabia IMO TST, 3

Tags: geometry
Let $ABC$ be a triangle inscribed in $(O)$. Two tangents of $(O)$ at $B,C$ meets at $P$. The bisector of angle $BAC $ intersects $(P,PB)$ at point $E$ lying inside triangle $ABC$. Let $M,N$ be the midpoints of arcs $BC$ and $BAC$. Circle with diameter $BC$ intersects line segment $EN$ at $F$. Prove that the orthocenter of triangle $EFM$ lies on $BC$.

2023 Sharygin Geometry Olympiad, 16

Let $AH_A$ and $BH_B$ be the altitudes of a triangle $ABC$. The line $H_AH_B$ meets the circumcircle of $ABC$ at points $P$ and $Q$. Let $A'$ be the reflection of $A$ about $BC$, and $B'$ be the reflection of $B$ about $CA$. Prove that $A',B', P,Q$ are concyclic.

2019 Simurgh, 2

Let $ABC$ be a triangle with $AB=AC$. Let point $Q$ be on plane such that $AQ \parallel BC$ and $AQ = AB$. Now let the $P$ be the foot of perpendicular from $Q$ to $BC$. Show that the circle with diameter $PQ$ is tangent to the circumcircle of triangle $ABC$.

1989 China National Olympiad, 1

We are given two point sets $A$ and $B$ which are both composed of finite disjoint arcs on the unit circle. Moreover, the length of each arc in $B$ is equal to $\dfrac{\pi}{m}$ ($m \in \mathbb{N}$). We denote by $A^j$ the set obtained by a counterclockwise rotation of $A$ about the center of the unit circle for $\dfrac{j\pi}{m}$ ($j=1,2,3,\dots$). Show that there exists a natural number $k$ such that $l(A^k\cap B)\ge \dfrac{1}{2\pi}l(A)l(B)$.(Here $l(X)$ denotes the sum of lengths of all disjoint arcs in the point set $X$)

1968 IMO Shortlist, 8

Given an oriented line $\Delta$ and a fixed point $A$ on it, consider all trapezoids $ABCD$ one of whose bases $AB$ lies on $\Delta$, in the positive direction. Let $E,F$ be the midpoints of $AB$ and $CD$ respectively. Find the loci of vertices $B,C,D$ of trapezoids that satisfy the following: [i](i) [/i] $|AB| \leq a$ ($a$ fixed); [i](ii) [/i] $|EF| = l$ ($l$ fixed); [i](iii)[/i] the sum of squares of the nonparallel sides of the trapezoid is constant. [hide="Remark"] [b]Remark.[/b] The constants are chosen so that such trapezoids exist.[/hide]

2014 Dutch Mathematical Olympiad, 5

We consider the ways to divide a $1$ by $1$ square into rectangles (of which the sides are parallel to those of the square). All rectangles must have the same circumference, but not necessarily the same shape. a) Is it possible to divide the square into 20 rectangles, each having a circumference of $2:5$? b) Is it possible to divide the square into 30 rectangles, each having a circumference of $2$?

1954 Polish MO Finals, 1

Prove that in an isosceles trapezoid circumscibed around a circle, the segments connecting the points of tangency of opposite sides with the circle pass through the point of intersection of the diagonals.

Kyiv City MO Juniors 2003+ geometry, 2011.8.41

The medians $AL, BM$, and $CN$ are drawn in the triangle $ABC$. Prove that $\angle ANC = \angle ALB$ if and only if $\angle ABM =\angle LAC$. (Veklich Bogdan)

2014 Online Math Open Problems, 12

The points $A$, $B$, $C$, $D$, $E$ lie on a line $\ell$ in this order. Suppose $T$ is a point not on $\ell$ such that $\angle BTC = \angle DTE$, and $\overline{AT}$ is tangent to the circumcircle of triangle $BTE$. If $AB = 2$, $BC = 36$, and $CD = 15$, compute $DE$. [i]Proposed by Yang Liu[/i]

2015 AMC 12/AHSME, 12

The parabolas $y=ax^2-2$ and $y=4-bx^2$ intersect the coordinate axes in exactly four points, and these four points are the vertices of a kite of area $12$. What is $a+b$? $\textbf{(A) }1\qquad\textbf{(B) }1.5\qquad\textbf{(C) }2\qquad\textbf{(D) }2.5\qquad\textbf{(E) }3$

2022 VIASM Summer Challenge, Problem 4

Tags: geometry
Given a triangle $ABC$ inscribed in $(O)$. Choose points $M,N,P$ on the sides $AB,BC,CA$ such that $AMNP$ is a parallelogram. The segment $CM$ intersects $NP$ at $E$; the segment $BP$ intersects $NM$ at $F$; and the segment $BE$ intersects $CF$ at $D.$ a) Prove that: $A,D,N$ are collinear. b) Let $I,J$ be the circumcenters of $\triangle MBF, \triangle PCE,$ respectively. Prove that: $OD$ passes through the midpoint of $IJ.$

2016 Auckland Mathematical Olympiad, 3

Tags: square , geometry , area
Triangle $XYZ$ is inside square $KLMN$ shown below so that its vertices each lie on three different sides of the square. It is known that: $\bullet$ The area of square $KLMN$ is $1$. $\bullet$ The vertices of the triangle divide three sides of the square up into these ratios: $KX : XL = 3 : 2$ $KY : YN = 4 : 1$ $NZ : ZM = 2 : 3$ What is the area of the triangle $XYZ$? (Note that the sketch is not drawn to scale). [img]https://cdn.artofproblemsolving.com/attachments/8/0/38e76709373ba02346515f9949ce4507ed4f8f.png[/img]

2007 Brazil National Olympiad, 5

Tags: geometry
Let $ ABCD$ be a convex quadrangle, $ P$ the intersection of lines $ AB$ and $ CD$, $ Q$ the intersection of lines $ AD$ and $ BC$ and $ O$ the intersection of diagonals $ AC$ and $ BD$. Show that if $ \angle POQ\equal{} 90^\circ$ then $ PO$ is the bisector of $ \angle AOD$ and $ OQ$ is the bisector of $ \angle AOB$.

2013 Princeton University Math Competition, 4

Tags: geometry , function
Let $f(x)=1-|x|$. Let \begin{align*}f_n(x)&=(\overbrace{f\circ \cdots\circ f}^{n\text{ copies}})(x)\\g_n(x)&=|n-|x| |\end{align*} Determine the area of the region bounded by the $x$-axis and the graph of the function $\textstyle\sum_{n=1}^{10}f(x)+\textstyle\sum_{n=1}^{10}g(x).$

2013 IFYM, Sozopol, 1

The points $P$ and $Q$ on the side $AC$ of the non-isosceles $\Delta ABC$ are such that $\angle ABP=\angle QBC<\frac{1}{2}\angle ABC$. The angle bisectors of $\angle A$ and $\angle C$ intersect the segment $BP$ in points $K$ and $L$ and the segment $BQ$ in points $M$ and $N$, respectively. Prove that $AC$,$KN$, and $LM$ are concurrent.

2013 India IMO Training Camp, 2

Let $ABCD$ by a cyclic quadrilateral with circumcenter $O$. Let $P$ be the point of intersection of the diagonals $AC$ and $BD$, and $K, L, M, N$ the circumcenters of triangles $AOP, BOP$, $COP, DOP$, respectively. Prove that $KL = MN$.

2011 N.N. Mihăileanu Individual, 4

Consider a triangle $ ABC $ having incenter $ I $ and inradius $ r. $ Let $ D $ be the tangency of $ ABC $ 's incircle with $ BC, $ and $ E $ on the line $ BC $ such that $ AE $ is perpendicular to $ BC, $ and $ M\neq E $ on the segment $ AE $ such that $ AM=r. $ [b]a)[/b] Give an idenity for $ \frac{BD}{DC} $ involving only the lengths of the sides of the triangle. [b]b)[/b] Prove that $ AB \cdot \overrightarrow{IC} +BC\cdot \overrightarrow{IA} +CA\cdot \overrightarrow{IB} =0. $ [b]c)[/b] Show that $ MI $ passes through the middle of the side $ BC. $ [i]Cătălin Zârnă[/i]

2004 Bulgaria Team Selection Test, 3

Tags: geometry , inradius
Find the maximum possible value of the inradius of a triangle whose vertices lie in the interior, or on the boundary, of a unit square.

2024 Azerbaijan Senior NMO, 3

Tags: geometry
In a scalene triangle $ABC$, the points $E$ and $F$ are the foot of altitudes drawn from $B$ and $C$, respectively. The points $X$ and $Y$ are the reflections of the vertices $B$ and $C$ to the line $EF$, respectively. Let the circumcircles of the $\triangle ABC$ and $\triangle AEF$ intersect at $T$ for the second time. Show that the four points $A, X, Y, T$ lie on a single circle.