This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2002 Switzerland Team Selection Test, 7

Let $ABC$ be a triangle and $P$ an exterior point in the plane of the triangle. Suppose the lines $AP$, $BP$, $CP$ meet the sides $BC$, $CA$, $AB$ (or extensions thereof) in $D$, $E$, $F$, respectively. Suppose further that the areas of triangles $PBD$, $PCE$, $PAF$ are all equal. Prove that each of these areas is equal to the area of triangle $ABC$ itself.

2007 Danube Mathematical Competition, 2

Let $ ABCD$ be an inscribed quadrilateral and let $ E$ be the midpoint of the diagonal $ BD$. Let $ \Gamma_1,\Gamma_2,\Gamma_3,\Gamma_4$ be the circumcircles of triangles $ AEB$, $ BEC$, $ CED$ and $ DEA$ respectively. Prove that if $ \Gamma_4$ is tangent to the line $ CD$, then $ \Gamma_1,\Gamma_2,\Gamma_3$ are tangent to the lines $ BC,AB,AD$ respectively.

1992 National High School Mathematics League, 9

From eight edges and eight diagonal of surfaces of a cube, choose $k$ lines. If any two lines of them are skew lines, then the maximum value of $k$ is________.

2012 All-Russian Olympiad, 3

A plane is coloured into black and white squares in a chessboard pattern. Then, all the white squares are coloured red and blue such that any two initially white squares that share a corner are different colours. (One is red and the other is blue.) Let $\ell$ be a line not parallel to the sides of any squares. For every line segment $I$ that is parallel to $\ell$, we can count the difference between the length of its red and its blue areas. Prove that for every such line $\ell$ there exists a number $C$ that exceeds all those differences that we can calculate.

2011 Saint Petersburg Mathematical Olympiad, 5

Tags: geometry
$ABCD$ - convex quadrilateral. $\angle A+ \angle D=150, \angle B<150, \angle C<150$ Prove, that area $ABCD$ is greater than $\frac{1}{4}(AB*CD+AB*BC+BC*CD)$

Indonesia MO Shortlist - geometry, g5

Let $ABCD$ be quadrilateral inscribed in a circle. Let $M$ be the midpoint of the segment $BD$. If the tangents of the circle at $ B$, and at $D$ are also concurrent with the extension of $AC$, prove that $\angle AMD = \angle CMD$.

Durer Math Competition CD Finals - geometry, 2015.C1

Can the touchpoints of the inscribed circle of a triangle with the triangle form an obtuse triangle?

2014 PUMaC Geometry A, 4

Consider the cyclic quadrilateral with side lengths $1$, $4$, $8$, $7$ in that order. What is its circumdiameter? Let the answer be of the form $a\sqrt b+c$, for $b$ squarefree. Find $a+b+c$.

2009 Bosnia Herzegovina Team Selection Test, 3

Let $n$ be a positive integer and $x$ positive real number such that none of numbers $x,2x,\dots,nx$ and none of $\frac{1}{x},\frac{2}{x},\dots,\frac{\left\lfloor nx\right\rfloor }{x}$ is an integer. Prove that \[ \left\lfloor x\right\rfloor +\left\lfloor 2x\right\rfloor +\dots+\left\lfloor nx\right\rfloor +\left\lfloor \frac{1}{x}\right\rfloor +\left\lfloor \frac{2}{x}\right\rfloor +\dots+\left\lfloor \frac{\left\lfloor nx\right\rfloor }{x}\right\rfloor =n\left\lfloor nx\right\rfloor \]

2007 Grigore Moisil Intercounty, 1

Tags: geometry
In a triangle $ ABC $ with $ AB\neq AC, $ let $ D $ be the midpoint of the side $ BC $ and denote with $ E $ the feet of the bisector of $ \angle BAC. $ Also, let $ M,N $ be two points situated in the exterior of $ ABC $ such that $ AMB\sim ANC. $ Prove the following propositions: $ \text{(a)} MN\perp AD\iff MA\perp AB $ $ \text{(b)} MN\perp AE \iff\angle MAN=180^{\circ } $

2015 Sharygin Geometry Olympiad, P4

In a parallelogram $ABCD$ the trisectors of angles $A$ and $B$ are drawn. Let $O$ be the common points of the trisectors nearest to $AB$. Let $AO$ meet the second trisector of angle $B$ at point $A_1$, and let $BO$ meet the second trisector of angle $A$ at point $B_1$. Let $M$ be the midpoint of $A_1B_1$. Line $MO$ meets $AB$ at point $N$ Prove that triangle $A_1B_1N$ is equilateral.

2001 Macedonia National Olympiad, 3

Let $ABC$ be a scalene triangle and $k$ be its circumcircle. Let $t_A,t_B,t_C$ be the tangents to $k$ at $A, B, C,$ respectively. Prove that points $AB\cap t_C$, $CA\cap t_B$, and $BC\cap t_A$ exist, and that they are collinear.

2015 Paraguay Juniors, 3

Tags: geometry
Tadeo draws the rectangle with the largest perimeter that can be divided into $2015$ squares of sidelength $1$ $cm$ and the rectangle with the smallest perimeter that can be divided into $2015$ squares of sidelength $1$ $cm$. What is the difference between the perimeters of the rectangles Tadeo drew?

2014 ITAMO, 2

Let $ABC$ be a triangle. Let $H$ be the foot of the altitude from $C$ on $AB$. Suppose that $AH = 3HB$. Suppose in addition we are given that (a) $M$ is the midpoint of $AB$; (b) $N$ is the midpoint of $AC$; (c) $P$ is a point on the opposite side of $B$ with respect to the line $AC$ such that $NP = NC$ and $PC = CB$. Prove that $\angle APM = \angle PBA$.

OMMC POTM, 2022 3

Define acute triangle $ABC$ with circumcircle $\omega.$ Let $Q$ be the midpoint of minor arc $BC$ in $\omega$ and let $Q'$ be the reflection of $Q$ over $BC.$ If the circle with diameter $BC$ is tangent to the external angle bisector of $\angle BAC$ at $P,$ show $\angle BPQ' = \angle CPA.$ [i]Proposed by Evan Chang (squareman), USA[/i] [img]https://cdn.artofproblemsolving.com/attachments/8/1/6333de3458f913477c75882896a40a48cd7ef7.png[/img]

1966 AMC 12/AHSME, 2

Tags: ratio , percent , geometry
When the base of a triangle is increased $10\%$ and the altitude to this base is decreased $10\%$, the change in area is $\text{(A)} \ 1\%~ \text{increase} \qquad \text{(B)} \ \frac12 \%~ \text{increase} \qquad \text{(C)} \ 0\% \qquad \text{(D)} \ \frac12 \% ~\text{decrease} \qquad \text{(E)} \ 1\% ~\text{decrease}$

Math Hour Olympiad, Grades 8-10, 2023

[u]Round 1[/u] [b]p1.[/b] Alex is on a week-long mining quest. Each morning, she mines at least $1$ and at most $10$ diamonds and adds them to her treasure chest (which already contains some diamonds). Every night she counts the total number of diamonds in her collection and finds that it is divisible by either $22$ or $25$. Show that she miscounted. [b]p2.[/b] Hermione set out a row of $11$ Bertie Bott’s Every Flavor Beans for Ron to try. There are $5$ chocolateflavored beans that Ron likes and $6$ beans flavored like earwax, which he finds disgusting. All beans look the same, and Hermione tells Ron that a chocolate bean always has another chocolate bean next to it. What is the smallest number of beans that Ron must taste to guarantee he finds a chocolate one? [b]p3.[/b] There are $101$ pirates on a pirate ship: the captain and $100$ crew. Each pirate, including the captain, starts with $1$ gold coin. The captain makes proposals for redistributing the coins, and the crew vote on these proposals. The captain does not vote. For every proposal, each crew member greedily votes “yes” if he gains coins as a result of the proposal, “no” if he loses coins, and passes otherwise. If strictly more crew members vote “yes” than “no,” the proposal takes effect. The captain can make any number of proposals, one after the other. What is the largest number of coins the captain can accumulate? [b]p4.[/b] There are $100$ food trucks in a circle and $10$ gnomes who sample their menus. For the first course, all the gnomes eat at different trucks. For each course after the first, gnome #$1$ moves $1$ truck left or right and eats there; gnome #$2$ moves $2$ trucks left or right and eats there; ... gnome #$10$ moves $10$ trucks left or right and eats there. All gnomes move at the same time. After some number of courses, each food truck had served at least one gnome. Show that at least one gnome ate at some food truck twice. [b]p5.[/b] The town of Lumenville has $100$ houses and is preparing for the math festival. The Tesla wiring company lays lengths of power wire in straight lines between the houses so that power flows between any two houses, possibly by passing through other houses.The Edison lighting company hangs strings of lights in straight lines between pairs of houses so that each house is connected by a string to exactly one other. Show that however the houses are arranged, the Edison company can always hang their strings of lights so that the total length of the strings is no more than the total length of the power wires the Tesla company used. [img]https://cdn.artofproblemsolving.com/attachments/9/2/763de9f4138b4dc552247e9316175036c649b6.png[/img] [u]Round 2[/u] [b]p6.[/b] What is the largest number of zeros that could appear at the end of $1^n + 2^n + 3^n + 4^n$, where n can be any positive integer? [b]p7.[/b] A tennis academy has $2023$ members. For every group of 1011 people, there is a person outside of the group who played a match against everyone in it. Show there is someone who has played against all $2022$ other members. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2011 Tuymaada Olympiad, 2

How many ways are there to remove an $11\times11$ square from a $2011\times2011$ square so that the remaining part can be tiled with dominoes ($1\times 2$ rectangles)?

2021 Francophone Mathematical Olympiad, 3

Let $ABCD$ be a square with incircle $\Gamma$. Let $M$ be the midpoint of the segment $[CD]$. Let $P \neq B$ be a point on the segment $[AB]$. Let $E \neq M$ be the point on $\Gamma$ such that $(DP)$ and $(EM)$ are parallel. The lines $(CP)$ and $(AD)$ meet each other at $F$. Prove that the line $(EF)$ is tangent to $\Gamma$

Geometry Mathley 2011-12, 9.2

Let $ABDE, BCFZ$ and $CAKL$ be three arbitrary rectangles constructed outside a triangle $ABC$. Let $EF$ meet $ZK$ at $M$, and $N$ be the intersection of the lines through $F,Z$ perpendicular to $FL,ZD$. Prove that $A,M,N$ are collinear. Kostas Vittas

2015 Ukraine Team Selection Test, 1

Let $O$ be the circumcenter of the triangle $ABC, A'$ be a point symmetric of $A$ wrt line $BC, X$ is an arbitrary point on the ray $AA'$ ($X \ne A$). Angle bisector of angle $BAC$ intersects the circumcircle of triangle $ABC$ at point $D$ ($D \ne A$). Let $M$ be the midpoint of the segment $DX$. A line passing through point $O$ parallel to $AD$, intersects $DX$ at point $N$. Prove that angles $BAM$ and $CAN$ angles are equal.

2024 Brazil Team Selection Test, 4

Tags: geometry
Let $ABCD$ be a cyclic quadrilateral with $\angle BAD < \angle ADC$. Let $M$ be the midpoint of the arc $CD$ not containing $A$. Suppose there is a point $P$ inside $ABCD$ such that $\angle ADB = \angle CPD$ and $\angle ADP = \angle PCB$. Prove that lines $AD, PM$, and $BC$ are concurrent.

2012 BMT Spring, 3

Tags: geometry , ratio , square , area
Let $ABC$ be a triangle with side lengths $AB = 2011$, $BC = 2012$, $AC = 2013$. Create squares $S_1 =ABB'A''$, $S_2 = ACC''A'$ , and $S_3 = CBB''C'$ using the sides $AB$, $AC$, $BC$ respectively, so that the side $B'A''$ is on the opposite side of $AB$ from $C$, and so forth. Let square $S_4$ have side length $A''A' $, square $S_5$ have side length $C''C'$, and square $S_6$ have side length $B''B'$. Let $A(S_i)$ be the area of square $S_i$ . Compute $\frac{A(S_4)+A(S_5)+A(S_6)}{A(S_1)+A(S_2)+A(S_3)}$?

2008 AMC 8, 21

Jerry cuts a wedge from a $6$-cm cylinder of bologna as shown by the dashed curve. Which answer choice is closest to the volume of his wedge in cubic centimeters? [asy] defaultpen(linewidth(0.65)); real d=90-63.43494882; draw(ellipse((origin), 2, 4)); fill((0,4)--(0,-4)--(-8,-4)--(-8,4)--cycle, white); draw(ellipse((-4,0), 2, 4)); draw((0,4)--(-4,4)); draw((0,-4)--(-4,-4)); draw(shift(-2,0)*rotate(-d-5)*ellipse(origin, 1.82, 4.56), linetype("10 10")); draw((-4,4)--(-8,4), dashed); draw((-4,-4)--(-8,-4), dashed); draw((-4,4.3)--(-4,5)); draw((0,4.3)--(0,5)); draw((-7,4)--(-7,-4), Arrows(5)); draw((-4,4.7)--(0,4.7), Arrows(5)); label("$8$ cm", (-7,0), W); label("$6$ cm", (-2,4.7), N);[/asy] $\textbf{(A)} 48 \qquad \textbf{(B)} 75 \qquad \textbf{(C)}151\qquad \textbf{(D)}192 \qquad \textbf{(E)}603$

2002 Tournament Of Towns, 4

Point $P$ is chosen in the plane of triangle $ABC$ such that $\angle{ABP}$ is congruent to $\angle{ACP}$ and $\angle{CBP}$ is congruent to $\angle{CAP}$. Show $P$ is the orthocentre.