Found problems: 25757
1990 APMO, 5
Show that for every integer $n \geq 6$, there exists a convex hexagon which can be dissected into exactly $n$ congruent triangles.
2013 Hong kong National Olympiad, 4
In a chess tournament there are $n>2$ players. Every two players play against each other exactly once. It is known that exactly $n$ games end as a tie. For any set $S$ of players, including $A$ and $B$, we say that $A$ [i]admires[/i] $B$ [i]in that set [/i]if
i) $A$ does not beat $B$; or
ii) there exists a sequence of players $C_1,C_2,\ldots,C_k$ in $S$, such that $A$ does not beat $C_1$, $C_k$ does not beat $B$, and $C_i$ does not beat $C_{i+1}$ for $1\le i\le k-1$.
A set of four players is said to be [i]harmonic[/i] if each of the four players admires everyone else in the set. Find, in terms of $n$, the largest possible number of harmonic sets.
2019 Iran Team Selection Test, 2
In a triangle $ABC$, $\angle A$ is $60^\circ$. On sides $AB$ and $AC$ we make two equilateral triangles (outside the triangle $ABC$) $ABK$ and $ACL$. $CK$ and $AB$ intersect at $S$ , $AC$ and $BL$ intersect at $R$ , $BL$ and $CK$ intersect at $T$. Prove the radical centre of circumcircle of triangles $BSK, CLR$ and $BTC$ is on the median of vertex $A$ in triangle $ABC$.
[i]Proposed by Ali Zamani[/i]
2007 Mongolian Mathematical Olympiad, Problem 3
Let $P$ be a point outside of the triangle $ABC$ in the plane of $ABC$. Prove that by using reflections $S_{AB}$, $S_{AC}$, and $S_{BC}$ across the lines $AB$, $AC$, and $BC$ one can shift point $P$ inside the triangle $ABC$.
2008 JBMO Shortlist, 11
Consider $ABC$ an acute-angled triangle with $AB \ne AC$. Denote by $M$ the midpoint of $BC$, by $D, E$ the feet of the altitudes from $B, C$ respectively and let $P$ be the intersection point of the lines $DE$ and $BC$. The perpendicular from $M$ to $AC$ meets the perpendicular from $C$ to $BC$ at point $R$. Prove that lines $PR$ and $AM$ are perpendicular.
2011 LMT, 20
In the figure below, circle $O$ has two tangents, $\overline{AC}$ and $\overline{BC}$. $\overline{EF}$ is drawn tangent to circle $O$ such that $E$ is on $\overline{AC}$, $F$ is on $\overline{BC}$, and $\overline{EF} \perp \overline{FC}$. Given that the diameter of circle $O$ has length $10$ and that $CO = 13$, what is the area of triangle $EFC$?
[img]https://cdn.artofproblemsolving.com/attachments/b/d/4a1bc818a5e138ae61f1f3d68f6ee5adc1ed6f.png[/img]
1985 Vietnam Team Selection Test, 2
Let $ ABC$ be a triangle with $ AB \equal{} AC$. A ray $ Ax$ is constructed in space such that the three planar angles of the trihedral angle $ ABCx$ at its vertex $ A$ are equal. If a point $ S$ moves on $ Ax$, find the locus of the incenter of triangle $ SBC$.
2021 Regional Olympiad of Mexico Center Zone, 5
Let $ABCD$ be a parallelogram. Half-circles $\omega_1,\omega_2,\omega_3$ and $\omega_4$ with diameters $AB,BC,CD$ and $DA$, respectively, are erected on the exterior of $ABCD$. Line $l_1$ is parallel to $BC$ and cuts $\omega_1$ at $X$, segment $AB$ at $P$, segment $CD$ at $R$ and $\omega_3$ at $Z$. Line $l_2$ is parallel to $AB$ and cuts $\omega_2$ at $Y$, segment $BC$ at $Q$, segment $DA$ at $S$ and $\omega_4$ at $W$. If $XP\cdot RZ=YQ\cdot SW$, prove that $PQRS$ is cyclic.
[i]Proposed by José Alejandro Reyes González[/i]
1995 Bulgaria National Olympiad, 4
Points $A_1,B_1,C_1$ are selected on the sides $BC$,$CA$,$AB$ respectively of an equilateral triangle $ABC$ in such a way that the inradii of the triangles $C_1AB_1$, $A_1BC_1$, $B_1CA_1$ and $A_1B_1C_1$ are equal. Prove that $A_1,B_1,C_1$ are the midpoints of the corresponding sides.
MBMT Team Rounds, 2020.26
Let $\triangle MBT$ be a triangle with $\overline{MB} = 4$ and $\overline{MT} = 7$. Furthermore, let circle $\omega$ be a circle with center $O$ which is tangent to $\overline{MB}$ at $B$ and $\overline{MT}$ at some point on segment $\overline{MT}$. Given $\overline{OM} = 6$ and $\omega$ intersects $ \overline{BT}$ at $I \neq B$, find the length of $\overline{TI}$.
[i]Proposed by Chad Yu[/i]
2016 CMIMC, 2
Let $ABCD$ be an isosceles trapezoid with $AD=BC=15$ such that the distance between its bases $AB$ and $CD$ is $7$. Suppose further that the circles with diameters $\overline{AD}$ and $\overline{BC}$ are tangent to each other. What is the area of the trapezoid?
2011 NZMOC Camp Selection Problems, 2
In triangle $ABC$, the altitude from $B$ is tangent to the circumcircle of $ABC$. Prove that the largest angle of the triangle is between $90^o$ and $135^o$. If the altitudes from both $B$ and from $C$ are tangent to the circumcircle, then what are the angles of the triangle?
1966 IMO Shortlist, 57
Is it possible to choose a set of $100$ (or $200$) points on the boundary of a cube such that this set is fixed under each isometry of the cube into itself? Justify your answer.
2021 Pan-American Girls' Math Olympiad, Problem 6
Let $ABC$ be a triangle with incenter $I$, and $A$-excenter $\Gamma$. Let $A_1,B_1,C_1$ be the points of tangency of $\Gamma$ with $BC,AC$ and $AB$, respectively. Suppose $IA_1, IB_1$ and $IC_1$ intersect $\Gamma$ for the second time at points $A_2,B_2,C_2$, respectively. $M$ is the midpoint of segment $AA_1$. If the intersection of $A_1B_1$ and $A_2B_2$ is $X$, and the intersection of $A_1C_1$ and $A_2C_2$ is $Y$, prove that $MX=MY$.
2008 Abels Math Contest (Norwegian MO) Final, 4b
A point $D$ lies on the side $BC$ , and a point $E$ on the side $AC$ , of the triangle $ABC$ , and $BD$ and $AE$ have the same length. The line through the centres of the circumscribed circles of the triangles $ADC$ and $BEC$ crosses $AC$ in $K$ and $BC$ in $L$. Show that $KC$ and $LC$ have the same length.
2011 All-Russian Olympiad Regional Round, 10.7
Points $C_0$ and $B_0$ are the respective midpoints of sides $AB$ and $AC$ of a non-isosceles acute triangle $ABC$, $O$ is its circumscenter and $H$ is the orthocenter. Lines $BH$ and $OC_0$ intersect at $P$, while lines $CH$ and $OB_0$ intersect at $Q$. $OPHQ$ is rhombus. Prove that points $A$, $P$ and $Q$ are collinear. (Author: L. Emelyanov)
1984 IMO Longlists, 47
Given points $O$ and $A$ in the plane. Every point in the plane is colored with one of a finite number of colors. Given a point $X$ in the plane, the circle $C(X)$ has center $O$ and radius $OX+{\angle AOX\over OX}$, where $\angle AOX$ is measured in radians in the range $[0,2\pi)$. Prove that we can find a point $X$, not on $OA$, such that its color appears on the circumference of the circle $C(X)$.
2010 Purple Comet Problems, 19
Square $A$ is adjacent to square $B$ which is adjacent to square $C$. The three squares all have their bottom sides along a common horizontal line. The upper left vertices of the three squares are collinear. If square $A$ has area $24$, and square $B$ has area $36$, find the area of square $C$.
[asy]
import graph; size(8cm);
real labelscalefactor = 0.5;
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
real xmin = -4.89, xmax = 13.61, ymin = -1.39, ymax = 9;
draw((0,0)--(2,0)--(2,2)--(0,2)--cycle, linewidth(1.2));
draw((2,0)--(5,0)--(5,3)--(2,3)--cycle, linewidth(1.2));
draw((5,4.5)--(5,0)--(9.5,0)--(9.5,4.5)--cycle, linewidth(1.2));
draw((2,0)--(2,2), linewidth(1.2));
draw((2,2)--(0,2), linewidth(1.2));
draw((0,2)--(0,0), linewidth(1.2));
draw((2,0)--(5,0), linewidth(1.2));
draw((5,0)--(5,3), linewidth(1.2));
draw((5,3)--(2,3), linewidth(1.2));
draw((2,3)--(2,0), linewidth(1.2));
draw((5,4.5)--(5,0), linewidth(1.2));
draw((5,0)--(9.5,0), linewidth(1.2));
draw((9.5,0)--(9.5,4.5), linewidth(1.2));
draw((9.5,4.5)--(5,4.5), linewidth(1.2));
label("A",(0.6,1.4),SE*labelscalefactor);
label("B",(3.1,1.76),SE*labelscalefactor);
label("C",(6.9,2.5),SE*labelscalefactor);
draw((13.13,8.56)--(-3.98,0), linewidth(1.2));
draw((-3.98,0)--(15.97,0), linewidth(1.2));[/asy]
2012 National Olympiad First Round, 9
The chord $[CD]$ of the circle with diameter $[AB]$ is perpendicular to $[AB]$. Let $M$ and $N$ be the midpoints of $[BC]$ and $[AD]$, respectively. If $|BC|=6$ and $|AD|=2\sqrt{3}$, then $|MN|=?$
$ \textbf{(A)}\ 4 \qquad \textbf{(B)}\ 3 \sqrt 2 \qquad \textbf{(C)}\ \sqrt{21} \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ \text{None}$
2018 All-Russian Olympiad, 2
Circle $\omega$ is tangent to sides $AB, AC$ of triangle $ABC$. A circle $\Omega$ touches the side $AC$ and line $AB$ (produced beyond $B$), and touches $\omega$ at a point $L$ on side $BC$. Line $AL$ meets $\omega, \Omega$ again at $K, M$. It turned out that $KB \parallel CM$. Prove that $\triangle LCM$ is isosceles.
2022 Brazil Team Selection Test, 4
Let $ABCD$ be a cyclic quadrilateral whose sides have pairwise different lengths. Let $O$ be the circumcenter of $ABCD$. The internal angle bisectors of $\angle ABC$ and $\angle ADC$ meet $AC$ at $B_1$ and $D_1$, respectively. Let $O_B$ be the center of the circle which passes through $B$ and is tangent to $\overline{AC}$ at $D_1$. Similarly, let $O_D$ be the center of the circle which passes through $D$ and is tangent to $\overline{AC}$ at $B_1$.
Assume that $\overline{BD_1} \parallel \overline{DB_1}$. Prove that $O$ lies on the line $\overline{O_BO_D}$.
2024-25 IOQM India, 30
Let $ABC$ be a right-angled triangle with $\angle B = 90^{\circ}$. Let the length of the altitude $BD$ be equal to $12$. What is the minimum possible length of $AC$, given that $AC$ and the perimeter of triangle $ABC$ are integers?
2010 Turkey MO (2nd round), 1
Let $A$ and $B$ be two points on the circle with diameter $[CD]$ and on the different sides of the line $CD.$ A circle $\Gamma$ passing through $C$ and $D$ intersects $[AC]$ different from the endpoints at $E$ and intersects $BC$ at $F.$ The line tangent to $\Gamma$ at $E$ intersects $BC$ at $P$ and $Q$ is a point on the circumcircle of the triangle $CEP$ different from $E$ and satisfying $|QP|=|EP|. \: AB \cap EF =\{R\}$ and $S$ is the midpoint of $[EQ].$ Prove that $DR$ is parallel to $PS.$
2018 Yasinsky Geometry Olympiad, 3
Construct triangle $ABC$, given the altitude and the angle bisector both from $A$, if it is known for the sides of the triangle $ABC$ that $2BC = AB + AC$.
(Alexey Karlyuchenko)
2001 South africa National Olympiad, 1
$ABCD$ is a convex quadrilateral with perimeter $p$. Prove that \[ \dfrac{1}{2}p < AC + BD < p. \] (A polygon is convex if all of its interior angles are less than $180^\circ$.)