Found problems: 25757
2019 India IMO Training Camp, P1
In an acute angled triangle $ABC$ with $AB < AC$, let $I$ denote the incenter and $M$ the midpoint of side $BC$. The line through $A$ perpendicular to $AI$ intersects the tangent from $M$ to the incircle (different from line $BC$) at a point $P$> Show that $AI$ is tangent to the circumcircle of triangle $MIP$.
[i]Proposed by Tejaswi Navilarekallu[/i]
2011 Romania Team Selection Test, 3
Let $ABC$ be a triangle such that $AB<AC$. The perpendicular bisector of the side $BC$ meets the side $AC$ at the point $D$, and the (interior) bisectrix of the angle $ADB$ meets the circumcircle $ABC$ at the point $E$. Prove that the (interior) bisectrix of the angle $AEB$ and the line through the incentres of the triangles $ADE$ and $BDE$ are perpendicular.
2000 Polish MO Finals, 2
Let a triangle $ABC$ satisfy $AC = BC$; in other words, let $ABC$ be an isosceles triangle with base $AB$. Let $P$ be a point inside the triangle $ABC$ such that $\angle PAB = \angle PBC$. Denote by $M$ the midpoint of the segment $AB$. Show that $\angle APM + \angle BPC = 180^{\circ}$.
1969 IMO Longlists, 55
For each of $k=1,2,3,4,5$ find necessary and sufficient conditions on $a>0$ such that there exists a tetrahedron with $k$ edges length $a$ and the remainder length $1$.
2009 All-Russian Olympiad, 4
Given a set $ M$ of points $ (x,y)$ with integral coordinates satisfying $ x^2 + y^2\leq 10^{10}$. Two players play a game. One of them marks a point on his first move. After this, on each move the moving player marks a point, which is not yet marked and joins it with the previous marked point. Players are not allowed to mark a point symmetrical to the one just chosen. So, they draw a broken line. The requirement is that lengths of edges of this broken line must strictly increase. The player, which can not make a move, loses. Who have a winning strategy?
2017 CMIMC Geometry, 10
Suppose $\triangle ABC$ is such that $AB=13$, $AC=15$, and $BC=14$. It is given that there exists a unique point $D$ on side $\overline{BC}$ such that the Euler lines of $\triangle ABD$ and $\triangle ACD$ are parallel. Determine the value of $\tfrac{BD}{CD}$. (The $\textit{Euler}$ line of a triangle $ABC$ is the line connecting the centroid, circumcenter, and orthocenter of $ABC$.)
1969 IMO Shortlist, 9
$(BUL 3)$ One hundred convex polygons are placed on a square with edge of length $38 cm.$ The area of each of the polygons is smaller than $\pi cm^2,$ and the perimeter of each of the polygons is smaller than $2\pi cm.$ Prove that there exists a disk with radius $1$ in the square that does not intersect any of the polygons.
2017 BMT Spring, 9
Let $AB = 10$ be a diameter of circle $P$. Pick point $C$ on the circle such that $AC = 8$. Let the circle with center $O$ be the incircle of $\vartriangle ABC$. Extend line $AO$ to intersect circle $P$ again at $D$. Find the length of $BD$.
2017 Iran MO (3rd round), 1
Let $ABC$ be a triangle. Suppose that $X,Y$ are points in the plane such that $BX,CY$ are tangent to the circumcircle of $ABC$, $AB=BX,AC=CY$ and $X,Y,A$ are in the same side of $BC$. If $I$ be the incenter of $ABC$ prove that $\angle BAC+\angle XIY=180$.
2003 Iran MO (3rd Round), 26
Circles $ C_1,C_2$ intersect at $ P$. A line $ \Delta$ is drawn arbitrarily from $ P$ and intersects with $ C_1,C_2$ at $ B,C$. What is locus of $ A$ such that the median of $ AM$ of triangle $ ABC$ has fixed length $ k$.
2022 Philippine MO, 4
Let $\triangle ABC$ have incenter $I$ and centroid $G$. Suppose that $P_A$ is the foot of the perpendicular from $C$ to the exterior angle bisector of $B$, and $Q_A$ is the foot of the perpendicular from $B$ to the exterior angle bisector of $C$. Define $P_B$, $P_C$, $Q_B$, and $Q_C$ similarly. Show that $P_A, P_B, P_C, Q_A, Q_B,$ and $Q_C$ lie on a circle whose center is on line $IG$.
2009 Chile National Olympiad, 1
Consider $9$ points in the interior of a square of side $1$. Prove that there are three of them that form a triangle with an area less than or equal to $\frac18$ .
2017 Sharygin Geometry Olympiad, 2
If $ABC$ is acute triangle, prove distance from each vertex to corresponding excentre is less than sum of two greatest side of triangle
2005 Sharygin Geometry Olympiad, 22
Perpendiculars at their centers of gravity (points of intersection of medians) are restored to the faces of the tetrahedron. Prove that the projections of the three perpendiculars to the fourth face intersect at one point.
Mid-Michigan MO, Grades 10-12, 2008
[b]p1.[/b] A square is tiled by smaller squares as shown in the figure. Find the area of the black square in the middle if the perimeter of the square $ABCD$ is $14$ cm.
[img]https://cdn.artofproblemsolving.com/attachments/1/1/0f80fc5f0505fa9752b5c9e1c646c49091b4ca.png[/img]
[b]p2.[/b] If $a, b$, and $c$ are numbers so that $a + b + c = 0$ and $a^2 + b^2 + c^2 = 1$. Compute $a^4 + b^4 + c^4$.
[b]p3.[/b] A given fraction $\frac{a}{b}$ ($a, b$ are positive integers, $a \ne b$) is transformed by the following rule: first, $1$ is added to both the numerator and the denominator, and then the numerator and the denominator of the new fraction are each divided by their greatest common divisor (in other words, the new fraction is put in simplest form). Then the same transformation is applied again and again. Show that after some number of steps the denominator and the numerator differ exactly by $1$.
[b]p4.[/b] A goat uses horns to make the holes in a new $30\times 60$ cm large towel. Each time it makes two new holes. Show that after the goat repeats this $61$ times the towel will have at least two holes whose distance apart is less than $6$ cm.
[b]p5.[/b] You are given $555$ weights weighing $1$ g, $2$ g, $3$ g, $...$ , $555$ g. Divide these weights into three groups whose total weights are equal.
[b]p6.[/b] Draw on the regular $8\times 8$ chessboard a circle of the maximal possible radius that intersects only black squares (and does not cross white squares). Explain why no larger circle can satisfy the condition.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2014 South africa National Olympiad, 6
Let $O$ be the centre of a two-dimensional coordinate system, and let $A_1, A_2, \ldots ,A_n$ be points in the first quadrant and $B_1, B_2, \ldots , B_m$ points in the second quadrant. We associate numbers $a_1, a_2, \ldots , a_n$ to the points $A_1, A_2, \ldots ,A_n$ and numbers $b_1, b_2, \ldots, b_m$ to the points $B_1, B_2, \ldots , B_m$, respectively. It turns out that the area of triangle $OA_jB_k$ is always equal to the product $a_jb_k$, for any $j$ and $k$. Show that either all the $A_j$ or all the $B_k$ lie on a single line through $O$.
2007 Croatia Team Selection Test, 4
Given a finite string $S$ of symbols $X$ and $O$, we write $@(S)$ for the number of $X$'s in $S$ minus the number of $O$'s. (For example, $@(XOOXOOX) =-1$.) We call a string $S$ [b]balanced[/b] if every substring $T$ of (consecutive symbols) $S$ has the property $-2 \leq @(T) \leq 2$. (Thus $XOOXOOX$ is not balanced since it contains the sub-string $OOXOO$ whose $@$-value is $-3$.) Find, with proof, the number of balanced strings of length $n$.
2010 Spain Mathematical Olympiad, 3
Let $ABCD$ be a convex quadrilateral. $AC$ and $BD$ meet at $P$, with $\angle APD=60^{\circ}$. Let $E,F,G$, and $H$ be the midpoints of $AB,BC,CD$ and $DA$ respectively. Find the greatest positive real number $k$ for which
\[EG+3HF\ge kd+(1-k)s \]
where $s$ is the semi-perimeter of the quadrilateral $ABCD$ and $d$ is the sum of the lengths of its diagonals. When does the equality hold?
2011 Rioplatense Mathematical Olympiad, Level 3, 4
We consider $\Gamma_1$ and $\Gamma_2$ two circles that intersect at points $P$ and $Q$ . Let $A , B$ and $C$ be points on the circle $\Gamma_1$ and $D , E$ and $F$ points on the circle $\Gamma_2$ so that the lines $A E$ and $B D$ intersect at $P$ and the lines $A F$ and $C D$ intersect at $Q$. Denote $M$ and $N$ the intersections of lines $A B$ and $D E$ and of lines $A C$ and $D F$ , respectively. Show that $A M D N$ is a parallelogram.
2010 Today's Calculation Of Integral, 580
Let $ k$ be a positive constant number. Denote $ \alpha ,\ \beta \ (0<\beta <\alpha)$ the $ x$ coordinates of the curve $ C: y\equal{}kx^2\ (x\geq 0)$ and two lines $ l: y\equal{}kx\plus{}\frac{1}{k},\ m: y\equal{}\minus{}kx\plus{}\frac{1}{k}$. Find the minimum area of the part bounded by the curve $ C$ and two lines $ l,\ m$.
1989 AMC 12/AHSME, 15
Hi guys,
I was just reading over old posts that I made last year ( :P ) and saw how much the level of Getting Started became harder. To encourage more people from posting, I decided to start a Problem of the Day. This is how I'll conduct this:
1. In each post (not including this one since it has rules, etc) everyday, I'll post the problem. I may post another thread after it to give hints though.
2. Level of problem.. This is VERY important. All problems in this thread will be all AHSME or problems similar to this level. No AIME. Some AHSME problems, however, that involve tough insight or skills will not be posted. The chosen problems will be usually ones that everyone can solve after working. Calculators are allowed when you solve problems but it is NOT necessary.
3. Response.. All you have to do is simply solve the problem and post the solution. There is no credit given or taken away if you get the problem wrong. This isn't like other threads where the number of problems you get right or not matters. As for posting, post your solutions here in this thread. Do NOT PM me. Also, here are some more restrictions when posting solutions:
A. No single answer post. It doesn't matter if you put hide and say "Answer is ###..." If you don't put explanation, it simply means you cheated off from some other people. I've seen several posts that went like "I know the answer" and simply post the letter. What is the purpose of even posting then? Huh?
B. Do NOT go back to the previous problem(s). This causes too much confusion.
C. You're FREE to give hints and post different idea, way or answer in some cases in problems. If you see someone did wrong or you don't understand what they did, post here. That's what this thread is for.
4. Main purpose.. This is for anyone who visits this forum to enjoy math. I rememeber when I first came into this forum, I was poor at math compared to other people. But I kindly got help from many people such as JBL, joml88, tokenadult, and many other people that would take too much time to type. Perhaps without them, I wouldn't be even a moderator in this forum now. This site clearly made me to enjoy math more and more and I'd like to do the same thing. That's about the rule.. Have fun problem solving!
Next post will contain the Day 1 Problem. You can post the solutions until I post one. :D
2007 Bulgaria Team Selection Test, 1
In isosceles triangle $ABC(AC=BC)$ the point $M$ is in the segment $AB$ such that $AM=2MB,$ $F$ is the midpoint of $BC$ and $H$ is the orthogonal projection of $M$ in $AF.$ Prove that $\angle BHF=\angle ABC.$
2022 Korea Winter Program Practice Test, 6
Let $ABC$ be an acute triangle with incenter $I$ and circumcircle $\Omega$. The line passing $I$ and perpendicular to $AI$ meets $AB, AC$ at $D, E$, respectively. $A$-excircle of $\triangle{ABC}$ meets $BC$ at $T$. $AT$ meets $\Omega$ at $P$. The line passing $P$ and parallel to $BC$ meets $\Omega$ at $Q$. The intersection of $QI$ and $AT$ is $K$. Prove that $Q,D,K,E$ are concyclic.
2017 Singapore Senior Math Olympiad, 2
In the cyclic quadrilateral $ABCD$, the sides $AB, DC$ meet at $Q$, the sides $AD,BC$ meet at $P, M$ is the midpoint of $BD$, If $\angle APQ=90^o$, prove that $PM$ is perpendicular to $AB$.
2018 USA TSTST, 5
Let $ABC$ be an acute triangle with circumcircle $\omega$, and let $H$ be the foot of the altitude from $A$ to $\overline{BC}$. Let $P$ and $Q$ be the points on $\omega$ with $PA = PH$ and $QA = QH$. The tangent to $\omega$ at $P$ intersects lines $AC$ and $AB$ at $E_1$ and $F_1$ respectively; the tangent to $\omega$ at $Q$ intersects lines $AC$ and $AB$ at $E_2$ and $F_2$ respectively. Show that the circumcircles of $\triangle AE_1F_1$ and $\triangle AE_2F_2$ are congruent, and the line through their centers is parallel to the tangent to $\omega$ at $A$.
[i]Ankan Bhattacharya and Evan Chen[/i]