This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2003 China Team Selection Test, 1

Let $ ABCD$ be a quadrilateral which has an incircle centered at $ O$. Prove that \[ OA\cdot OC\plus{}OB\cdot OD\equal{}\sqrt{AB\cdot BC\cdot CD\cdot DA}\]

2005 Baltic Way, 15

Let the lines $e$ and $f$ be perpendicular and intersect each other at $H$. Let $A$ and $B$ lie on $e$ and $C$ and $D$ lie on $f$, such that all five points $A,B,C,D$ and $H$ are distinct. Let the lines $b$ and $d$ pass through $B$ and $D$ respectively, perpendicularly to $AC$; let the lines $a$ and $c$ pass through $A$ and $C$ respectively, perpendicularly to $BD$. Let $a$ and $b$ intersect at $X$ and $c$ and $d$ intersect at $Y$. Prove that $XY$ passes through $H$.

Ukraine Correspondence MO - geometry, 2012.7

Let $O$ and $H$ be the center of the circumcircle and the point of intersection of the altitudes of the acute triangle $ABC$ respectively, $D$ be the foot of the altitude drawn to $BC$, and $E$ be the midpoint of $AO$. Prove that the circumcircle of the triangle $ADE$ passes through the midpoint of the segment $OH$.

2004 All-Russian Olympiad Regional Round, 11.8

Given a triangular pyramid $ABCD$. Sphere $S_1$ passing through points $A$, $B$, $C$, intersects edges $AD$, $BD$, $CD$ at points $K$, $L$, $M$, respectively; sphere $S_2$ passing through points $A$, $B$, $D$ intersects the edges $AC$, $BC$, $DC$ at points $P$, $Q$, $M$ respectively. It turned out that $KL \parallel PQ$. Prove that the bisectors of plane angles $KMQ$ and $LMP$ are the same.

1994 AMC 8, 16

The perimeter of one square is $3$ times the perimeter of another square. The area of the larger square is how many times the area of the smaller square? $\text{(A)}\ 2 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 6 \qquad \text{(E)}\ 9$

2020 Stars of Mathematics, 1

Tags: geometry
Let $ABC$ be a triangle, and let $D, E$ and $F$ be the feet of the altitudes from $A, B$ and $C,$ respectively. A circle $\omega_A$ through $B$ and $C$ crosses the line $EF$ at $X$ and $X'$. Similarly, a circle $\omega_B$ through $C$ and $A$ crosses the line $FD$ at $Y$ and $Y',$ and a circle $\omega_C$ through $A$ and $B$ crosses the line $DE$ at $Z$ and $Z'$. Prove that $X, Y$ and $Z$ are collinear if and only if $X', Y'$ and $Z'$ are collinear. [i]Vlad Robu[/i]

2023 Lusophon Mathematical Olympiad, 2

Tags: geometry
Let $D$ be a point on the inside of triangle $ABC$ such that $AD=CD$, $\angle DAB=70^{\circ}$, $\angle DBA=30^{\circ}$ and $\angle DBC=20^{\circ}$. Find the measure of angle $\angle DCB$.

2014 Harvard-MIT Mathematics Tournament, 5

Let $\mathcal{C}$ be a circle in the $xy$ plane with radius $1$ and center $(0, 0, 0)$, and let $P$ be a point in space with coordinates $(3, 4, 8)$. Find the largest possible radius of a sphere that is contained entirely in the slanted cone with base $\mathcal{C}$ and vertex $P$.

2017 Regional Olympiad of Mexico West, 2

From a point $P$, two tangent lines are drawn to a circle $\Gamma$, which touch it at points $A$ and $B$. A circle $\Phi$ is drawn with center at $P$ and passes through $A$ and $B$ and is taken a point $R$ that is on the circumference $\Phi$ and in the interior of $\Gamma$. The straight line $PR$ intersects $\Gamma$ at the points $S$ and $Q$. The straight lines $AR$ and $BR$ meet $\Gamma$ again at points $C$ and $D$, respectively. Prove that $CD$ passes through the midpoint of $SQ$.

2014 AMC 10, 16

In rectangle $ABCD$, $AB=1$, $BC=2$, and points $E$, $F$, and $G$ are midpoints of $\overline{BC}$, $\overline{CD}$, and $\overline{AD}$, respectively. Point $H$ is the midpoint of $\overline{GE}$. What is the area of the shaded region? [asy] import graph; size(9cm); pen dps = fontsize(10); defaultpen(dps); pair D = (0,0); pair F = (1/2,0); pair C = (1,0); pair G = (0,1); pair E = (1,1); pair A = (0,2); pair B = (1,2); pair H = (1/2,1); // do not look pair X = (1/3,2/3); pair Y = (2/3,2/3); draw(A--B--C--D--cycle); draw(G--E); draw(A--F--B); draw(D--H--C); filldraw(H--X--F--Y--cycle,grey); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$E$",E,E); label("$F$",F,S); label("$G$",G,W); label("$H$",H,N); label("$\displaystyle\frac12$",(0.25,0),S); label("$\displaystyle\frac12$",(0.75,0),S); label("$1$",(1,0.5),E); label("$1$",(1,1.5),E); [/asy] $ \textbf{(A)}\ \dfrac1{12}\qquad\textbf{(B)}\ \dfrac{\sqrt3}{18}\qquad\textbf{(C)}\ \dfrac{\sqrt2}{12}\qquad\textbf{(D)}\ \dfrac{\sqrt3}{12}\qquad\textbf{(E)}\ \dfrac16 $

2008 Irish Math Olympiad, 5

A triangle $ ABC$ has an obtuse angle at $ B$. The perpindicular at $ B$ to $ AB$ meets $ AC$ at $ D$, and $ |CD| \equal{} |AB|$. Prove that $ |AD|^2 \equal{} |AB|.|BC|$ if and only if $ \angle CBD \equal{} 30^\circ$.

2010 QEDMO 7th, 4

Tags: geometry , square , area
Let $ABCD$ and $A'B'C'D'$ be two squares, both are oriented clockwise. In addition, it is assumed that all points are arranged as shown in the figure.Then it has to be shown that the sum of the areas of the quadrilaterals $ABB'A'$ and $CDD'C'$ equal to the sum of the areas of the quadrilaterals $BCC'B'$ and $DAA'D'$. [img]https://cdn.artofproblemsolving.com/attachments/0/2/6f7f793ded22fe05a7b0a912ef6c4e132f963e.png[/img]

1985 ITAMO, 6

As shown in the figure, triangle $ABC$ is divided into six smaller triangles by lines drawn from the vertices through a common interior point. The areas of four of these triangles are as indicated. Find the area of triangle $ABC$. [asy] size(200); pair A=origin, B=(14,0), C=(9,12), D=foot(A, B,C), E=foot(B, A, C), F=foot(C, A, B), H=orthocenter(A, B, C); draw(F--C--A--B--C^^A--D^^B--E); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, N); label("84", centroid(H, C, E), fontsize(9.5)); label("35", centroid(H, B, D), fontsize(9.5)); label("30", centroid(H, F, B), fontsize(9.5)); label("40", centroid(H, A, F), fontsize(9.5));[/asy]

1991 Vietnam National Olympiad, 3

Three mutually perpendicular rays $O_x,O_y,O_z$ and three points $A,B,C$ on $O_x,O_y,O_z$, respectively. A variable sphere є through $A, B,C$ meets $O_x,O_y,O_z$ again at $A', B',C'$, respectively. Let $M$ and $M'$ be the centroids of triangles $ABC$ and $A'B'C'$. Find the locus of the midpoint of $MM'$.

2019 Costa Rica - Final Round, LR3

Tags: geometry , square , area
Consider the following sequence of squares (side $1$), in each step the central square is divided into equal parts and colored as shown in the figure: [img]https://cdn.artofproblemsolving.com/attachments/9/0/6874ab5aecadf2112fbe4a196ab3091ab8b31a.png[/img] Square 1 Square 2 Square 3 Let $A_n$ with $n \in N$, $n> 1$ be the shaded area of square $n$, show that $A_n <\frac23$

2009 Croatia Team Selection Test, 3

It is given a convex quadrilateral $ ABCD$ in which $ \angle B\plus{}\angle C < 180^0$. Lines $ AB$ and $ CD$ intersect in point E. Prove that $ CD*CE\equal{}AC^2\plus{}AB*AE \leftrightarrow \angle B\equal{} \angle D$

2021 Saudi Arabia Training Tests, 12

Let $ABC$ be a triangle with circumcenter $O$ and incenter $I$, ex-center in angle $A$ is $J$. Denote $D$ as the tangent point of $(I)$ on $BC$ and the angle bisector of angle $A$ cuts $BC$, $(O)$ respectively at $E, F$. The circle $(DEF )$ meets $(O)$ again at $T$. Prove that $AT$ passes through an intersection of $(J)$ and $(DEF )$.

2000 Mongolian Mathematical Olympiad, Problem 3

A cube of side $n$ is cut into $n^3$ unit cubes, and m of these cubes are marked so that the centers of any three marked cubes do not form a right-angled triangle with legs parallel to sides of the cube. Find the maximum possible value of $m$.

1959 Polish MO Finals, 3

Given a pyramid with square base $ ABCD $ and vertex $ S $. Find the shortest path whose starting and ending point is the point $ S $ and which passes through all the vertices of the base.

2002 China National Olympiad, 1

Tags: geometry
For every four points $P_{1},P_{2},P_{3},P_{4}$ on the plane, find the minimum value of $\frac{\sum_{1\le\ i<j\le\ 4}P_{i}P_{j}}{\min_{1\le\ i<j\le\ 4}(P_{i}P_{j})}$.

2022 Junior Balkan Team Selection Tests - Moldova, 8

Tags: incenter , geometry , angle
Let $ABC$ be the triangle and $I$ the center of the circle inscribed in this triangle. The point $M$, located on the tangent taken to the point $B$ to the circumscribed circle of the triangle $ABC$, satisfies the relation $AB = MB$. Point $N$, located on the tangent taken to point $C$ to the same circle, satisfies the relation $AC = NC$. Points $M, A$ and $N$ lie on the same side of the line $BC$. Prove that $$\angle BAC + \angle MIN = 180^o.$$

2016 PUMaC Geometry B, 3

Tags: geometry
Let $ABCD$ be a square with side length $8$. Let $M$ be the midpoint of $BC$ and let $\omega$ be the circle passing through $M, A$, and $D$. Let $O$ be the center of $\omega, X$ be the intersection point (besides A) of $\omega$ with $AB$, and $Y$ be the intersection point of $OX$ and $AM$. If the length of $OY$ can be written in simplest form as $\frac{m}{n}$ , compute $m + n$.

2005 Germany Team Selection Test, 2

Let $\Gamma$ be a circle and let $d$ be a line such that $\Gamma$ and $d$ have no common points. Further, let $AB$ be a diameter of the circle $\Gamma$; assume that this diameter $AB$ is perpendicular to the line $d$, and the point $B$ is nearer to the line $d$ than the point $A$. Let $C$ be an arbitrary point on the circle $\Gamma$, different from the points $A$ and $B$. Let $D$ be the point of intersection of the lines $AC$ and $d$. One of the two tangents from the point $D$ to the circle $\Gamma$ touches this circle $\Gamma$ at a point $E$; hereby, we assume that the points $B$ and $E$ lie in the same halfplane with respect to the line $AC$. Denote by $F$ the point of intersection of the lines $BE$ and $d$. Let the line $AF$ intersect the circle $\Gamma$ at a point $G$, different from $A$. Prove that the reflection of the point $G$ in the line $AB$ lies on the line $CF$.

2009 Chile National Olympiad, 6

There are $n \ge 6$ green points in the plane, such that no $3$ of them are collinear. Suppose further that $6$ of these points are the vertices of a convex hexagon. Prove that there are $5$ green points that form a pentagon that does not contain any other green point inside.

2020 CHMMC Winter (2020-21), 1

Tags: geometry
A right triangle $ABC$ is inscribed in the circular base of a cone. If two of the side lengths of $ABC$ are $3$ and $4$, and the distance from the vertex of the cone to any point on the circumference of the base is $3$, then the minimum possible volume of the cone can be written as $\frac{m\pi\sqrt{n}}{p}$, where $m$, $n$, and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is squarefree. Find $m + n + p$.