This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2006 Iran Team Selection Test, 3

Let $l,m$ be two parallel lines in the plane. Let $P$ be a fixed point between them. Let $E,F$ be variable points on $l,m$ such that the angle $EPF$ is fixed to a number like $\alpha$ where $0<\alpha<\frac{\pi}2$. (By angle $EPF$ we mean the directed angle) Show that there is another point (not $P$) such that it sees the segment $EF$ with a fixed angle too.

1997 AMC 8, 22

A two-inch cube $(2\times 2\times 2)$ of silver weighs 3 pounds and is worth \$200. How much is a three-inch cube of silver worth? $\textbf{(A)}\ 300\text{ dollars} \qquad \textbf{(B)}\ 375\text{ dollars} \qquad \textbf{(C)}\ 450\text{ dollars} \qquad \textbf{(D)}\ 560\text{ dollars} \qquad \textbf{(E)}\ 675\text{ dollars}$

V Soros Olympiad 1998 - 99 (Russia), 10.10

A circle inscribed in triangle $ABC$ touches $BC$ at point $K$, $M$ is the midpoint of the altitude drawn on $BC$. The straight line $KM$ intersects the circle inscribed in $ABC$ for the second time at point $P$. Prove that the circle passing through $B$, $C$ and $P$ touches the circle inscribed in triangle $ABC$.

2015 Peru IMO TST, 15

Tags: geometry
Let $ABC$ be a triangle. The points $K, L,$ and $M$ lie on the segments $BC, CA,$ and $AB,$ respectively, such that the lines $AK, BL,$ and $CM$ intersect in a common point. Prove that it is possible to choose two of the triangles $ALM, BMK,$ and $CKL$ whose inradii sum up to at least the inradius of the triangle $ABC$. [i]Proposed by Estonia[/i]

2019 Tuymaada Olympiad, 8

Andy, Bess, Charley and Dick play on a $1000 \times 1000$ board. They make moves in turn: Andy first, then Bess, then Charley and finally Dick, after that Andy moves again and so on. At each move a player must paint several unpainted squares forming $2 \times 1, 1 \times 2, 1 \times 3$, or $3 \times 1$ rectangle. The player that cannot move loses. Prove that some three players can cooperate to make the fourth player lose.

1996 Canadian Open Math Challenge, 7

Triangle $ABC$ is right angled at $A$. The circle with center $A$ and radius $AB$ cuts $BC$ and $AC$ internally at $D$ and $E$ respectively. If $BD = 20$ and $DC = 16$, determine $AC^2$.

1970 Regional Competition For Advanced Students, 3

$E_1$ and $E_2$ are parallel planes and their distance is $p$. (a) How long is the seitenkante of the regular octahedron such that a side lies in $E_1$ and another in $E_2$? (b) $E$ is a plane between $E_1$ and $E_2$, parallel to $E_1$ and $E_2$, so that its distances from $E_1$ and $E_2$ are in ratio $1:2$ Draw the intersection figure of $E$ and the octahedron for $P=4\sqrt{\frac32}$ cm and justifies, why the that figure must look in such a way

2020 Princeton University Math Competition, A5/B7

Tags: geometry
Triangle $ABC$ is so that $AB = 15$, $BC = 22$, and $AC = 20$. Let $D, E, F$ lie on $BC$, $AC$, and $AB$, respectively, so $AD$, $BE$, $CF$ all contain a point $K$. Let $L$ be the second intersection of the circumcircles of $BFK$ and $CEK$. Suppose that $\frac{AK}{KD} = \frac{11}{7}$ , and $BD = 6$. If $KL^2 =\frac{a}{b}$, where $a, b$ are relatively prime integers, find $a + b$.

1990 AMC 12/AHSME, 27

Tags: geometry
Which of these triples could [u]not[/u] be the lengths of the three altitudes of a triangle? $ \textbf{(A)}\ 1,\sqrt{3},2 \qquad\textbf{(B)}\ 3,4,5 \qquad\textbf{(C)}\ 5,12,13 \qquad\textbf{(D)}\ 7,8,\sqrt{113} \qquad\textbf{(E)}\ 8,15,17 $

1990 IMO Longlists, 20

Could the three-dimensional space be expressed as the union of disjoint circumferences?

2023 Durer Math Competition Finals, 5

Tags: geometry
King Minos divided his rectangular island of Crete between his 3 sons as follows: he built a wall along one diagonal of the island and gave one half of the island to his eldest son. Then, in the remaining triangular area, from the right-angled vertex he built a wall perpendicular to the other wall. Of the two areas thus obtained, the larger was given to the middle son and the smaller to the youngest. Each of the three sons had the largest possible square palace built on his own land. How many times is the area of the eldest son’s palace larger than the area of the youngest son’s palace if the side lengths of the island are $30$ m and $210$ m?

2006 Germany Team Selection Test, 3

The diagonals $AC$ and $BD$ of a cyclic quadrilateral $ABCD$ meet at a point $X$. The circumcircles of triangles $ABX$ and $CDX$ meet at a point $Y$ (apart from $X$). Let $O$ be the center of the circumcircle of the quadrilateral $ABCD$. Assume that the points $O$, $X$, $Y$ are all distinct. Show that $OY$ is perpendicular to $XY$.

2005 Uzbekistan National Olympiad, 4

Let $ABCD$ is a cyclic. $K,L,M,N$ are midpoints of segments $AB$, $BC$ $CD$ and $DA$. $H_{1},H_{2},H_{3},H_{4}$ are orthocenters of $AKN$ $KBL$ $LCM$ and $MND$. Prove that $H_{1}H_{2}H_{3}H_{4}$ is a paralelogram.

2016 Junior Balkan Team Selection Tests - Romania, 4

Let $ABCD$ be a cyclic quadrilateral.$E$ is the midpoint of $(AC)$ and $F$ is the midpoint of $(BD)$ {$G$}=$AB\cap CD$ and {$H$}=$AD\cap BC$. a)Prove that the intersections of the angle bisector of $\angle{AHB}$ and the sides $AB$ and $CD$ and the intersections of the angle bisector of$\angle{AGD}$ with $BC$ and $AD$ are the verticles of a rhombus b)Prove that the center of this rhombus lies on $EF$

2020 Yasinsky Geometry Olympiad, 3

Point $M$ is the midpoint of the side $CD$ of the trapezoid $ABCD$, point $K$ is the foot of the perpendicular drawn from point $M$ to the side $AB$. Give that $3BK \le AK$. Prove that $BC + AD\ge 2BM$.

2012 India PRMO, 7

Tags: geometry
In $\vartriangle ABC$, we have $AC = BC = 7$ and $AB = 2$. Suppose that $D$ is a point on line $AB$ such that $B$ lies between $A$ and $D$ and $CD = 8$. What is the length of the segment $BD$?

2023 Oral Moscow Geometry Olympiad, 6

Tags: geometry
Points $C_1$ and $C_2$ lie on side $AB$ of triangle $ABC$, where the point $C_1$ belongs to the segment $AC_2$ and $\angle ACC_1= \angle BCC_2$. On segments $CC_1$ and $CC_2$ points $A'$ and $B'$ are taken such that $\angle CAA'= \angle CBB' = \angle C_1CC_2$. Prove that the center of the circle $(CA'B')$ lies on the perpendicular bisector of the segment $AB$.

1972 IMO Shortlist, 11

Consider a sequence of circles $K_1,K_2,K_3,K_4, \ldots$ of radii $r_1, r_2, r_3, r_4, \ldots$ , respectively, situated inside a triangle $ABC$. The circle $K_1$ is tangent to $AB$ and $AC$; $K_2$ is tangent to $K_1$, $BA$, and $BC$; $K_3$ is tangent to $K_2$, $CA$, and $CB$; $K_4$ is tangent to $K_3$, $AB$, and $AC$; etc. (a) Prove the relation \[r_1 \cot \frac 12 A+ 2 \sqrt{r_1r_2} + r_2 \cot \frac 12 B = r \left(\cot \frac 12 A + \cot \frac 12 B \right) \] where $r$ is the radius of the incircle of the triangle $ABC$. Deduce the existence of a $t_1$ such that \[r_1=r \cot \frac 12 B \cot \frac 12 C \sin^2 t_1\] (b) Prove that the sequence of circles $K_1,K_2, \ldots $ is periodic.

DMM Individual Rounds, 2021

[b]p1.[/b] There are $4$ mirrors facing the inside of a $5\times 7$ rectangle as shown in the figure. A ray of light comes into the inside of a rectangle through $A$ with an angle of $45^o$. When it hits the sides of the rectangle, it bounces off at the same angle, as shown in the diagram. How many times will the ray of light bounce before it reaches any one of the corners $A$, $B$, $C$, $D$? A bounce is a time when the ray hit a mirror and reflects off it. [img]https://cdn.artofproblemsolving.com/attachments/1/e/d6ea83941cdb4b2dab187d09a0c45782af1691.png[/img] [b]p2.[/b] Jerry cuts $4$ unit squares out from the corners of a $45\times 45$ square and folds it into a $43\times 43\times 1$ tray. He then divides the bottom of the tray into a $43\times 43$ grid and drops a unit cube, which lands in precisely one of the squares on the grid with uniform probability. Suppose that the average number of sides of the cube that are in contact with the tray is given by $\frac{m}{n}$ where $m, n$ are positive integers that are relatively prime. Find $m + n$. [b]p3.[/b] Compute $2021^4 - 4 \cdot 2023^4 + 6 \cdot 2025^4 - 4 \cdot 2027^4 + 2029^4$. [b]p4.[/b] Find the number of distinct subsets $S \subseteq \{1, 2,..., 20\}$, such that the sum of elements in $S$ leaves a remainder of $10$ when divided by $32$. [b]p5.[/b] Some $k$ consecutive integers have the sum $45$. What is the maximum value of $k$? [b]p6.[/b] Jerry picks $4$ distinct diagonals from a regular nonagon (a regular polygon with $9$-sides). A diagonal is a segment connecting two vertices of the nonagon that is not a side. Let the probability that no two of these diagonals are parallel be $\frac{m}{n}$ where $m, n$ are positive integers that are relatively prime. Find $m + n$. [b]p7.[/b] The Olympic logo is made of $5$ circles of radius $1$, as shown in the figure [img]https://cdn.artofproblemsolving.com/attachments/1/7/9dafe6b72aa8471234afbaf4c51e3e97c49ee5.png[/img] Suppose that the total area covered by these $5$ circles is $a+b\pi$ where $a, b$ are rational numbers. Find $10a + 20b$. [b]p8.[/b] Let $P(x)$ be an integer polynomial (polynomial with integer coefficients) with $P(-5) = 3$ and $P(5) = 23$. Find the minimum possible value of $|P(-2) + P(2)|$. [b]p9. [/b]There exists a unique tuple of rational numbers $(a, b, c)$ such that the equation $$a \log 10 + b \log 12 + c \log 90 = \log 2025.$$ What is the value of $a + b + c$? [b]p10.[/b] Each grid of a board $7\times 7$ is filled with a natural number smaller than $7$ such that the number in the grid at the $i$th row and $j$th column is congruent to $i + j$ modulo $7$. Now, we can choose any two different columns or two different rows, and swap them. How many different boards can we obtain from a finite number of swaps? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2021 HMNT, 6

The taxicab distance between points $(x_1, y_1$) and $(x_2, y_2)$ is $|x_2 -x_1|+|y_2 -y_1|$. A regular octagon is positioned in the $xy$ plane so that one of its sides has endpoints $(0, 0)$ and $(1, 0)$. Let $S$ be the set of all points inside the octagon whose taxicab distance from some octagon vertex is at most $2/3$. The area of $S$ can be written as $m/n$ , where $m, n$ are positive integers and $gcd (m, n) = 1$. Find $100m + n$.

1987 Austrian-Polish Competition, 6

Let $C$ be a unit circle and $n \ge 1$ be a fixed integer. For any set $A$ of $n$ points $P_1,..., P_n$ on $C$ define $D(A) = \underset{d}{max}\, \underset{i}{min}\delta (P_i, d)$, where $d$ goes over all diameters of $C$ and $\delta (P, \ell)$ denotes the distance from point $P$ to line $\ell$. Let $F_n$ be the family of all such sets $A$. Determine $D_n = \underset{A\in F_n}{min} D(A)$ and describe all sets $A$ with $D(A) = D_n$.

2002 Czech and Slovak Olympiad III A, 4

Find all pairs of real numbers $a, b$ for which the equation in the domain of the real numbers \[\frac{ax^2-24x+b}{x^2-1}=x\] has two solutions and the sum of them equals $12$.

1991 Dutch Mathematical Olympiad, 5

Let $ H$ be the orthocenter, $ O$ the circumcenter, and $ R$ the circumradius of an acute-angled triangle $ ABC$. Consider the circles $ k_a,k_b,k_c,k_h,k$, all with radius $ R$, centered at $ A,B,C,H,M,$ respectively. Circles $ k_a$ and $ k_b$ meet at $ M$ and $ F$; $ k_a$ and $ k_c$ meet at $ M$ and $ E$; and $ k_b$ and $ k_c$ meet at $ M$ and $ D$. $ (a)$ Prove that the points $ D,E,F$ lie on the circle $ k_h$. $ (b)$ Prove that the set of the points inside $ k_h$ that are inside exactly one of the circles $ k_a,k_b,k_c$ has the area twice the area of $ \triangle ABC$.

2014 AMC 10, 13

Six regular hexagons surround a regular hexagon of side length $1$ as shown. What is the area of $\triangle ABC$? [asy] for(int i = 0; i < 6; ++i){ for(int j = 0; j < 6; ++j){ draw(sqrt(3)*dir(60*i+30)+dir(60*j)--sqrt(3)*dir(60*i+30)+dir(60*j+60)); } } draw(2*dir(60)--2*dir(180)--2*dir(300)--cycle); label("A",2*dir(180),dir(180)); label("B",2*dir(60),dir(60)); label("C",2*dir(300),dir(300)); [/asy] $ \textbf {(A) } 2\sqrt{3} \qquad \textbf {(B) } 3\sqrt{3} \qquad \textbf {(C) } 1+3\sqrt{2} \qquad \textbf {(D) } 2+2\sqrt{3} \qquad \textbf {(E) } 3+2\sqrt{3} $

2009 Olympic Revenge, 1

Given a scalene triangle $ABC$ with circuncenter $O$ and circumscribed circle $\Gamma$. Let $D, E ,F$ the midpoints of $BC, AC, AB$. Let $M=OE \cap AD$, $N=OF \cap AD$ and $P=CM \cap BN$. Let $X=AO \cap PE$, $Y=AP \cap OF$. Let $r$ the tangent of $\Gamma$ through $A$. Prove that $r, EF, XY$ are concurrent.