This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2000 Portugal MO, 5

In the figure, $[ABC]$ and $[DEC]$ are right triangles . Knowing that $EB = 1/2, EC = 1$ and $AD = 1$, calculate $DC$. [img]https://1.bp.blogspot.com/-nAOrVnK5JmI/X4UMb2CNTyI/AAAAAAAAMmk/TtaBESxYyJ0FsBoY2XaCGlCTc6mgmA5TQCLcBGAsYHQ/s0/2000%2Bportugal%2Bp5.png[/img]

2022 Yasinsky Geometry Olympiad, 4

In the triangle $ABC$ the relationship $AB+AC = 2BC$ holds. Let $I$ and $M$ be the incenter and intersection point of the medians of triangle $ABC$ respectively, $AL$ its angle bisector, and point $P$ the orthocenter of triangle $BIC$. Prove that the points $L, M, P$ lie on a straight line. (Matvii Kurskyi)

2008 Regional Olympiad of Mexico Northeast, 1

Let $ABCD$ be a parallelogram, $E$ a point on the line $AB$, beyond $B, F$ a point on the line $AD$, beyond $D$, and $K$ the point of intersection of the lines $ED$ and $BF$. Prove that quadrilaterals $ABKD$ and $CEKF$ have the same area.

1984 IMO Longlists, 41

Determine positive integers $p, q$, and $r$ such that the diagonal of a block consisting of $p\times q\times r$ unit cubes passes through exactly $1984$ of the unit cubes, while its length is minimal. (The diagonal is said to pass through a unit cube if it has more than one point in common with the unit cube.)

2002 Poland - Second Round, 2

In a convex quadrilateral $ABCD$, both $\angle ADB=2\angle ACB$ and $\angle BDC=2\angle BAC$. Prove that $AD=CD$.

2015 Singapore Senior Math Olympiad, 5

Let $A$ be a point on the circle $\omega$ centred at $B$ and $\Gamma$ a circle centred at $A$. For $i=1,2,3$, a chord $P_iQ_i$ of $\omega$ is tangent to $\Gamma$ at $S_i$ and another chord $P_iR_i$ of $\omega$ is perpendicular to $AB$ at $M_i$. Let $Q_iT_i$ be the other tangent from $Q_i$ to $\Gamma$ at $T_i$ and $N_i$ be the intersection of $AQ_i$ with $M_iT_i$. Prove that $N_1,N_2,N_3$ are collinear.

2006 Junior Tuymaada Olympiad, 3

Given a convex $ n $-gon ($ n \geq 5 $). Prove that the number of triangles of area $1$ with vertices at the vertices of the $ n $-gon does not exceed $ \frac{1}{3} n (2n-5) $.

2007 Moldova National Olympiad, 11.3

$ABCDA_{1}B_{1}C_{1}D_{1}$ is a cube with side length $4a$. Points $E$ and $F$ are taken on $(AA_{1})$ and $(BB_{1})$ such that $AE=B_{1}F=a$. $G$ and $H$ are midpoints of $(A_{1}B_{1})$ and $(C_{1}D_{1})$, respectively. Find the minimum value of the $CP+PQ$, where $P\in[GH]$ and $Q\in[EF]$.

2024 German National Olympiad, 5

Let $\triangle ABC$ be a triangle and let $X$ be a point in the interior of the triangle. The second intersection points of the lines $XA,XB$ and $XC$ with the circumcircle of $\triangle ABC$ are $P,Q$ and $R$. Let $U$ be a point on the ray $XP$ (these are the points on the line $XP$ such that $P$ and $U$ lie on the same side of $X$). The line through $U$ parallel to $AB$ intersects $BQ$ in $V$ . The line through $U$ parallel to $AC$ intersects $CR$ in $W$. Prove that $Q, R, V$ , and $W$ lie on a circle.

2023 4th Memorial "Aleksandar Blazhevski-Cane", P4

Let $ABCD$ be a cyclic quadrilateral such that $AB = AD + BC$ and $CD < AB$. The diagonals $AC$ and $BD$ intersect at $P$, while the lines $AD$ and $BC$ intersect at $Q$. The angle bisector of $\angle APB$ meets $AB$ at $T$. Show that the circumcenter of the triangle $CTD$ lies on the circumcircle of the triangle $CQD$. [i]Proposed by Nikola Velov[/i]

2006 Stanford Mathematics Tournament, 3

Tags: geometry
A triangle has altitudes of length 5 and 7. What is the maximum length of the third altitude?

2012 Junior Balkan Team Selection Tests - Romania, 2

Consider a semicircle of center $O$ and diameter $[AB]$, and let $C$ be an arbitrary point on the segment $(OB)$. The perpendicular to the line $AB$ through $C$ intersects the semicircle in $D$. A circle centered in $P$ is tangent to the arc $BD$ in $F$ and to the segments $[AB]$ and $[CD]$ in $G$ and $E$, respectively. Prove that the triangle $ADG$ is isosceles.

Estonia Open Senior - geometry, 2001.1.1

Points $A, B, C, D, E$ and F are given on a circle in such a way that the three chords $AB, CD$ and $EF$ intersect in one point. Express angle $\angle EFA$ in terms of angles $\angle ABC$ and $\angle CDE$ (find all possibilities).

2021 Sharygin Geometry Olympiad, 15

Tags: geometry
Let $APBCQ$ be a cyclic pentagon. A point $M$ inside triangle $ABC$ is such that $\angle MAB = \angle MCA$, $\angle MAC = \angle MBA$ and $\angle PMB = \angle QMC = 90^\circ$. Prove that $AM$, $BP$, and $CQ$ concur. [i]Anant Mudgal and Navilarekallu Tejaswi[/i]

1997 China National Olympiad, 2

Tags: geometry
Let $A_1B_1C_1D_1$ be an arbitrary convex quadrilateral. $P$ is a point inside the quadrilateral such that each angle enclosed by one edge and one ray which starts at one vertex on that edge and passes through point $P$ is acute. We recursively define points $A_k,B_k,C_k,D_k$ symmetric to $P$ with respect to lines $A_{k-1}B_{k-1}, B_{k-1}C_{k-1}, C_{k-1}D_{k-1},D_{k-1}A_{k-1}$ respectively for $k\ge 2$. Consider the sequence of quadrilaterals $A_iB_iC_iD_i$. i) Among the first 12 quadrilaterals, which are similar to the 1997th quadrilateral and which are not? ii) Suppose the 1997th quadrilateral is cyclic. Among the first 12 quadrilaterals, which are cyclic and which are not?

2022 Taiwan TST Round 2, G

Let $I$, $O$, $H$, and $\Omega$ be the incenter, circumcenter, orthocenter, and the circumcircle of the triangle $ABC$, respectively. Assume that line $AI$ intersects with $\Omega$ again at point $M\neq A$, line $IH$ and $BC$ meets at point $D$, and line $MD$ intersects with $\Omega$ again at point $E\neq M$. Prove that line $OI$ is tangent to the circumcircle of triangle $IHE$. [i]Proposed by Li4 and Leo Chang.[/i]

1986 IMO Shortlist, 3

Let $A, B$, and $C$ be three points on the edge of a circular chord such that $B$ is due west of $C$ and $ABC$ is an equilateral triangle whose side is $86$ meters long. A boy swam from $A$ directly toward $B$. After covering a distance of $x$ meters, he turned and swam westward, reaching the shore after covering a distance of $y$ meters. If $x$ and $y$ are both positive integers, determine $y.$

1993 Korea - Final Round, 2

Tags: incenter , geometry
Let be given a triangle $ABC$ with $BC = a, CA = b, AB = c$. Find point $P$ in the plane for which $aAP^{2}+bBP^{2}+cCP^{2}$ is minimum, and compute this minimum.

2011 Denmark MO - Mohr Contest, 2

In the octagon below all sides have the length $1$ and all angles are equal. Determine the distance between the corners $A$ and $B$. [img]https://1.bp.blogspot.com/-i6TAFDvcQ8w/XzXCRhnV_kI/AAAAAAAAMVw/rKrQMfPYYJIaCwl8hhdVHdqO4fIn8O7cwCLcBGAsYHQ/s0/2011%2BMogh%2Bp2.png[/img]

2003 China Team Selection Test, 1

$ABC$ is an acute-angled triangle. Let $D$ be the point on $BC$ such that $AD$ is the bisector of $\angle A$. Let $E, F$ be the feet of perpendiculars from $D$ to $AC,AB$ respectively. Suppose the lines $BE$ and $CF$ meet at $H$. The circumcircle of triangle $AFH$ meets $BE$ at $G$ (apart from $H$). Prove that the triangle constructed from $BG$, $GE$ and $BF$ is right-angled.

2010 All-Russian Olympiad, 2

Into triangle $ABC$ gives point $K$ lies on bisector of $ \angle BAC$. Line $CK$ intersect circumcircle $ \omega$ of triangle $ABC$ at $M \neq C$. Circle $ \Omega$ passes through $A$, touch $CM$ at $K$ and intersect segment $AB$ at $P \neq A$ and $\omega $ at $Q \neq A$. Prove, that $P$, $Q$, $M$ lies at one line.

2007 Turkey Team Selection Test, 2

Two different points $A$ and $B$ and a circle $\omega$ that passes through $A$ and $B$ are given. $P$ is a variable point on $\omega$ (different from $A$ and $B$). $M$ is a point such that $MP$ is the bisector of the angle $\angle{APB}$ ($M$ lies outside of $\omega$) and $MP=AP+BP$. Find the geometrical locus of $M$.

2002 Federal Math Competition of S&M, Problem 2

Points $A_0,A_1,\ldots,A_{2k}$, in this order, divide a circumference into $2k+1$ equal arcs. Point $A_0$ is connected by chords to all the other points. These $2k$ chords divide the interior of the circle into $2k+1$ parts. These parts are alternately painted red and blue so that there are $k+1$ red and $k$ blue parts. Show that the blue area is larger than the red area.

1995 Czech And Slovak Olympiad IIIA, 5

Let $A,B$ be points on a circle $k$ with center $S$ such that $\angle ASB = 90^o$ . Circles $k_1$ and $k_2$ are tangent to each other at $Z$ and touch $k$ at $A$ and $B$ respectively. Circle $k_3$ inside $\angle ASB$ is internally tangent to $k$ at $C$ and externally tangent to $k_1$ and $k_2$ at $X$ and $Y$, respectively. Prove that $\angle XCY = 45^o$

2016 Austria Beginners' Competition, 4

Tags: pentagon , geometry
Let $ABCDE$ be a convex pentagon with five equal sides and right angles at $C$ and $D$. Let $P$ denote the intersection point of the diagonals $AC$ and $BD$. Prove that the segments $PA$ and $PD$ have the same length. (Gottfried Perz)