This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2008 Princeton University Math Competition, A7/B9

Let $\mathcal{H}$ be the region of points $(x, y)$, such that $(1, 0), (x, y), (-x, y)$, and $(-1,0)$ form an isosceles trapezoid whose legs are shorter than the base between $(x, y)$ and $(-x,y)$. Find the least possible positive slope that a line could have without intersecting $\mathcal{H}$.

2016 Sharygin Geometry Olympiad, 5

Tags: geometry , angle
The center of a circle $\omega_2$ lies on a circle $\omega_1$. Tangents $XP$ and $XQ$ to $\omega_2$ from an arbitrary point $X$ of $\omega_1$ ($P$ and $Q$ are the touching points) meet $\omega_1$ for the second time at points $R$ and $S$. Prove that the line $PQ$ bisects the segment $RS$.

2017 Brazil Team Selection Test, 2

Tags: geometry
Let $ABC$ be a triangle with $AB < AC$. Let $D$ be the intersection point of the internal bisector of angle $BAC$ and the circumcircle of $ABC$. Let $Z$ be the intersection point of the perpendicular bisector of $AC$ with the external bisector of angle $\angle{BAC}$. Prove that the midpoint of the segment $AB$ lies on the circumcircle of triangle $ADZ$. [i]Olimpiada de Matemáticas, Nicaragua[/i]

2006 Sharygin Geometry Olympiad, 17

In two circles intersecting at points $A$ and $B$, parallel chords $A_1B_1$ and $A_2B_2$ are drawn. The lines $AA_1$ and $BB_2$ intersect at the point $X, AA_2$ and $BB_1$ intersect at the point $Y$. Prove that $XY // A_1B_1$.

2009 Princeton University Math Competition, 5

A polygon is called concave if it has at least one angle strictly greater than $180^{\circ}$. What is the maximum number of symmetries that an 11-sided concave polygon can have? (A [i]symmetry[/i] of a polygon is a way to rotate or reflect the plane that leaves the polygon unchanged.)

2009 Ukraine National Mathematical Olympiad, 3

Given $2009 \times 4018$ rectangular board. Frame is a rectangle $n \times n$ or $n \times(n + 2)$ for $ ( n \geq 3 )$ without all cells which don’t have any common points with boundary of rectangle. Rectangles $1\times1,1\times 2,1\times 3$ and $ 2\times 4$ are also frames. Two players by turn paint all cells of some frame that has no painted cells yet. Player that can't make such move loses. Who has a winning strategy?

2018 Iran MO (1st Round), 20

In the convex and cyclic quadrilateral $ABCD$, we have $\angle B = 110^{\circ}$. The intersection of $AD$ and $BC$ is $E$ and the intersection of $AB$ and $CD$ is $F$. If the perpendicular from $E$ to $AB$ intersects the perpendicular from $F$ to $BC$ on the circumcircle of the quadrilateral at point $P$, what is $\angle PDF$ in degrees?

LMT Speed Rounds, 19

Evin picks distinct points $A, B, C, D, E$, and $F$ on a circle. What is the probability that there are exactly two intersections among the line segments $AB$, $CD$, and $EF$? [i]Proposed by Evin Liang[/i]

1981 Bulgaria National Olympiad, Problem 1

Five points are given in space, no four of which are coplanar. Each of the segments connecting two of them is painted in white, green or red, so that all the colors are used and no three segments of the same color form a triangle. Prove that among these five points there is one at which segments of all the three colors meet.

2011 Baltic Way, 14

The incircle of a triangle $ABC$ touches the sides $BC,CA,AB$ at $D,E,F$, respectively. Let $G$ be a point on the incircle such that $FG$ is a diameter. The lines $EG$ and $FD$ intersect at $H$. Prove that $CH\parallel AB$.

1950 Poland - Second Round, 4

Inside the triangle $ABC$ there is a point $P$ such that $$\angle PAB=\angle PBC =\angle PCA = \phi.$$ Prove that $$\frac{1}{\sin^2 \phi}=\frac{1}{\sin^2 A} +\frac{1}{\sin^2 B} +\frac{1}{\sin^2 C}$$

2013 Junior Balkan Team Selection Tests - Romania, 4

Consider acute triangles $ABC$ and $BCD$, with $\angle BAC = \angle BDC$, such that $A$ and $D$ are on opposite sides of line $BC$. Denote by $E$ the foot of the perpendicular line to $AC$ through $B$ and by $F$ the foot of the perpendicular line to $BD$ through $C$. Let $H_1$ be the orthocenter of triangle $ABC$ and $H_2$ be the orthocenter of $BCD$. Show that lines $AD, EF$ and $H_1H_2$ are concurrent.

2011 Estonia Team Selection Test, 1

Two circles lie completely outside each other.Let $A$ be the point of intersection of internal common tangents of the circles and let $K$ be the projection of this point onto one of their external common tangents.The tangents,different from the common tangent,to the circles through point $K$ meet the circles at $M_1$ and $M_2$.Prove that the line $AK$ bisects angle $M_1 KM_2$.

2022 Novosibirsk Oral Olympiad in Geometry, 7

Vera has several identical matches, from which she makes a triangle. Vera wants any two sides of this triangle to differ in length by at least $10$ matches, but it turned out that it is impossible to add such a triangle from the available matches (it is impossible to leave extra matches). What is the maximum number of matches Vera can have?

2012 All-Russian Olympiad, 2

The points $A_1,B_1,C_1$ lie on the sides $BC,CA$ and $AB$ of the triangle $ABC$ respectively. Suppose that $AB_1-AC_1=CA_1-CB_1=BC_1-BA_1$. Let $O_A,O_B$ and $O_C$ be the circumcentres of triangles $AB_1C_1,A_1BC_1$ and $A_1B_1C$ respectively. Prove that the incentre of triangle $O_AO_BO_C$ is the incentre of triangle $ABC$ too.

1997 Slovenia National Olympiad, Problem 3

Tags: geometry
Let $C$ and $D$ be different points on the semicircle with diameter $AB$. The lines $AC$ and $BD$ intersect at $E$, and the lines $AD$ and $BC$ intersect at $F$. Prove that the midpoints $X,Y,Z$ of the segments $AB,CD,EF$ respectively are collinear.

2013 AMC 12/AHSME, 8

Line $\ell_1$ has equation $3x-2y=1$ and goes through $A=(-1,-2)$. Line $\ell_2$ has equation $y=1$ and meets line $\ell_1$ at point $B$. Line $\ell_3$ has positive slope, goes through point $A$, and meets $\ell_2$ at point $C$. The area of $\triangle ABC$ is $3$. What is the slope of $\ell_3$? $ \textbf{(A)}\ \frac{2}{3}\qquad\textbf{(B)}\ \frac{3}{4}\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ \frac{4}{3}\qquad\textbf{(E)}\ \frac{3}{2} $

2007 Iran Team Selection Test, 1

In triangle $ABC$, $M$ is midpoint of $AC$, and $D$ is a point on $BC$ such that $DB=DM$. We know that $2BC^{2}-AC^{2}=AB.AC$. Prove that \[BD.DC=\frac{AC^{2}.AB}{2(AB+AC)}\]

2013 ELMO Problems, 5

For what polynomials $P(n)$ with integer coefficients can a positive integer be assigned to every lattice point in $\mathbb{R}^3$ so that for every integer $n \ge 1$, the sum of the $n^3$ integers assigned to any $n \times n \times n$ grid of lattice points is divisible by $P(n)$? [i]Proposed by Andre Arslan[/i]

Durer Math Competition CD 1st Round - geometry, 2016.D+3

Let $M$ be the intersection point of the diagonals of the convex quadrilateral $ABCD$. Let $P$ and $Q$ be the centroids of triangles $AMD$ and $BMC$ respectively. Let $R$ and $S$ are the orthocenters of triangles $AMB$ and $CMD$. Prove that the lines $P Q$ and $RS$ are perpendicular to each other.

1985 IMO Longlists, 86

Let $l$ denote the length of the smallest diagonal of all rectangles inscribed in a triangle $T$ . (By inscribed, we mean that all four vertices of the rectangle lie on the boundary of $T$ .) Determine the maximum value of $\frac{l^2}{S(T)}$ taken over all triangles ($S(T )$ denotes the area of triangle $T$ ).

1975 AMC 12/AHSME, 4

Tags: geometry , ratio
If the side of one square is the diagonal of a second square, what is the ratio of the area of the first square to the area of the second? $ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ \sqrt2 \qquad \textbf{(C)}\ 1/2 \qquad \textbf{(D)}\ 2\sqrt2 \qquad \textbf{(E)}\ 4$

1999 Romania National Olympiad, 2

On the sides $(AB)$, $(BC)$, $(CD)$ and $(DA)$ of the regular tetrahedron $ABCD$, one considers the points $M$, $N$, $P$, $Q$, respectively Prove that $$MN \cdot NP \cdot PQ \cdot QM \ge AM \cdot BN \cdot CP \cdot DQ.$$

2024 ELMO Shortlist, G7

Let $ABC$ be a triangle. Construct rectangles $BA_1A_2C$, $CB_1B_2A$, and $AC_1C_2B$ outside $ABC$ such that $\angle BCA_1=\angle CAB_1=\angle ABC_1$. Let $A_1B_2$ and $A_2C_1$ intersect at $A'$ and define $B',C'$ similarly. Prove that line $AA'$ bisects $B'C'$. [i]Linus Tang[/i]

Russian TST 2020, P3

Tags: geometry
In a convex quadrilateral $ABCD$, the lines $AB$ and $DC$ intersect at point $P{}$ and the lines $AD$ and $BC$ intersect at point $Q{}$. The points $E{}$ and $F{}$ are inside the quadrilateral $ABCD$ such that the circles $(ABE), (CDE), (BCF),(ADF)$ intersect at one point $K{}$. Prove that the circles $(PKF)$ and $(QKE)$ intersect a second time on the line $PQ$.