Found problems: 25757
2015 Postal Coaching, Problem 4
Let $ABC$ be at triangle with incircle $\Gamma$. Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ be three circles inside $\triangle ABC$ each of which is tangent to $\Gamma$ and two sides of the triangle and their radii are $1,4,9$. Find the radius of $\Gamma$.
2009 Greece National Olympiad, 4
Consider pairwise distinct complex numbers $z_1,z_2,z_3,z_4,z_5,z_6$ whose images $A_1,A_2,A_3,A_4,A_5,A_6$ respectively are succesive points on the circle centered at $O(0,0)$ and having radius $r>0.$
If $w$ is a root of the equation $z^2+z+1=0$ and the next equalities hold \[z_1w^2+z_3w+z_5=0 \\ z_2w^2+z_4w+z_6=0\] prove that
[b]a)[/b] Triangle $A_1A_3A_5$ is equilateral
[b]b)[/b] \[|z_1-z_2|+|z_2-z_3|+|z_3-z_4|+|z_4-z_5|+z_5-z_6|+|z_6-z_1|=3|z_1-z_4|=3|z_2-z_5|=3|z_3-z_6|.\]
2000 Vietnam National Olympiad, 2
Two circles $ (O_1)$ and $ (O_2)$ with respective centers $ O_1$, $ O_2$ are given on a plane. Let $ M_1$, $ M_2$ be points on $ (O_1)$, $ (O_2)$ respectively, and let the lines $ O_1M_1$ and $ O_2M_2$ meet at $ Q$. Starting simultaneously from these positions, the points $ M_1$ and $ M_2$ move clockwise on their own circles with the same angular velocity.
(a) Determine the locus of the midpoint of $ M_1M_2$.
(b) Prove that the circumcircle of $ \triangle M_1QM_2$ passes through a fixed point.
Durer Math Competition CD Finals - geometry, 2014.D2
On the inner surface of a fixed circle, rolls a wheel half the radius of the circle, without slipping. We marked a point red on the wheel. Prove that while the wheel makes a turn, the point moves on a line.
[img]https://1.bp.blogspot.com/-PhgUWk0eU2c/X9j1gNJ7w3I/AAAAAAAAMzo/gP13TIZq7YsvNDBGVISkMQSdjwCgk_zwQCLcBGAsYHQ/s0/2014%2BDurer%2BD2.png[/img]
1986 IMO Shortlist, 15
Let $ABCD$ be a convex quadrilateral whose vertices do not lie on a circle. Let $A'B'C'D'$ be a quadrangle such that $A',B', C',D'$ are the centers of the circumcircles of triangles $BCD,ACD,ABD$, and $ABC$. We write $T (ABCD) = A'B'C'D'$. Let us define $A''B''C''D'' = T (A'B'C'D') = T (T (ABCD)).$
[b](a)[/b] Prove that $ABCD$ and $A''B''C''D''$ are similar.
[b](b) [/b]The ratio of similitude depends on the size of the angles of $ABCD$. Determine this ratio.
1991 AMC 12/AHSME, 5
In the arrow-shaped polygon [see figure], the angles at vertices $A$, $C$, $D$, $E$ and $F$ are right angles, $BC = FG = 5$, $CD = FE = 20$, $DE = 10$, and $AB = AG$. The area of the polygon is closest to
[asy]
size(200);
defaultpen(linewidth(0.7)+fontsize(10));
pair A=origin, B=(10,10), C=(10,5), D=(30,5), E=(30,-5), F=(10,-5), G=(10,-10);
draw(A--B--C--D--E--F--G--A);
label("$A$", A, W);
label("$B$", B, NE);
label("$C$", C, S);
label("$D$", D, NE);
label("$E$", E, SE);
label("$F$", F, N);
label("$G$", G, SE);
label("$5$", (11,7.5));
label("$5$", (11,-7.5));
label("$20$", (C+D)/2, N);
label("$20$", (F+E)/2, S);
label("$10$", (31,0));
[/asy]
$ \textbf{(A)}\ 288\qquad\textbf{(B)}\ 291\qquad\textbf{(C)}\ 294\qquad\textbf{(D)}\ 297\qquad\textbf{(E)}\ 300 $
2022 Caucasus Mathematical Olympiad, 2
In parallelogram $ABCD$, points $E$ and $F$ on segments $AD$ and $CD$ are such that $\angle BCE=\angle BAF$. Points $K$ and $L$ on segments $AD$ and $CD$ are such that $AK=ED$ and $CL=FD$. Prove that $\angle BKD=\angle BLD$.
2007 Princeton University Math Competition, 6
A sphere of radius $\sqrt{85}$ is centered at the origin in three dimensions. A tetrahedron with vertices at integer lattice points is inscribed inside the sphere. What is the maximum possible volume of this tetrahedron?
Durer Math Competition CD Finals - geometry, 2022.C3
To the exterior of side $AB$ of square $ABCD$, we have drawn the regular triangle $ABE$. Point $A$ reflected on line $BE$ is $F$, and point $E$ reflected on line $BF$ is $G$. Let the perpendicular bisector of segment $FG$ meet segment $AD$ at $X$. Show that the circle centered at $X$ with radius $XA$ touches line$ FB$.
1991 Tournament Of Towns, (311) 1
Two circles with centres $A$ and $B$ lie inside an angle. They touch each other and both sides of the angle. Prove that the circle with the diameter $AB$ touches both sides of the angle.
(V. Prasolov)
2004 USAMTS Problems, 1
The numbers 1 through 10 can be arranged along the vertices and sides of a pentagon so that the sum of the three numbers along each side is the same. The diagram below shows an arrangement with sum 16. Find, with proof, the smallest possible value for a sum and give an example of an arrangement with that sum.
[asy]
int i;
pair[] A={dir(18+72*0), dir(18+72*1), dir(18+72*2),dir(18+72*3), dir(18+72*4), dir(18+72*0)};
pair O=origin;
int[] v = {7,1,10,4,3};
int[] s = {8, 5, 2, 9, 6};
for(i=0; i<5; i=i+1) {
label(string(v[i]), A[i], dir(O--A[i]));
label(string(s[i]), A[i]--A[i+1], dir(-90)*dir(A[i]--A[i+1]));
}
draw(rotate(0)*polygon(5));[/asy]
2019 Taiwan TST Round 2, 2
Given a triangle $ \triangle{ABC} $. Denote its incircle and circumcircle by $ \omega, \Omega $, respectively. Assume that $ \omega $ tangents the sides $ AB, AC $ at $ F, E $, respectively. Then, let the intersections of line $ EF $ and $ \Omega $ to be $ P,Q $. Let $ M $ to be the mid-point of $ BC $. Take a point $ R $ on the circumcircle of $ \triangle{MPQ} $, say $ \Gamma $, such that $ MR \perp EF $. Prove that the line $ AR $, $ \omega $ and $ \Gamma $ intersect at one point.
2015 India Regional MathematicaI Olympiad, 5
Let ABC be a right triangle with $\angle B = 90^{\circ}$.Let E and F be respectively the midpoints of AB and AC.Suppose the incentre I of ABC lies on the circumcircle of triangle AEF,find the ratio BC/AB.
1998 Denmark MO - Mohr Contest, 1
In the figure shown, the small circles have radius $1$. Calculate the area of the gray part of the figure.
[img]https://1.bp.blogspot.com/-oy-WirJ6u9o/XzcFc3roVDI/AAAAAAAAMX8/qxNy5I_0RWUOxl-ZE52fnrwo0v0T7If9QCLcBGAsYHQ/s0/1998%2BMohr%2Bp1.png[/img]
2013 Princeton University Math Competition, 2
An equilateral triangle is given. A point lies on the incircle of this triangle. If the smallest two distances from the point to the sides of the triangle is $1$ and $4$, the sidelength of this equilateral triangle can be expressed as $\tfrac{a\sqrt b}c$ where $(a,c)=1$ and $b$ is not divisible by the square of an integer greater than $1$. Find $a+b+c$.
2017 Saint Petersburg Mathematical Olympiad, 2
A circle passing through vertices $A$ and $B$ of triangle $ABC$ intersects the sides $AC$ and $BC$ again at points $P$ and $Q$, respectively. Given that the median from vertex $C$ bisect the arc $PQ$ of the circle. Prove that $ABC$ is an isosceles triangle.
2006 Iran MO (3rd Round), 4
The image shown below is a cross with length 2. If length of a cross of length $k$ it is called a $k$-cross. (Each $k$-cross ahs $6k+1$ squares.)
[img]http://aycu08.webshots.com/image/4127/2003057947601864020_th.jpg[/img]
a) Prove that space can be tiled with $1$-crosses.
b) Prove that space can be tiled with $2$-crosses.
c) Prove that for $k\geq5$ space can not be tiled with $k$-crosses.
2016 District Olympiad, 1
Let be a pyramid having a square as its base and the projection of the top vertex to the base is the center of the square. Prove that two opposite faces are perpendicular if and only if the angle between two adjacent faces is $ 120^{\circ } . $
2017 IMO Shortlist, G3
Let $O$ be the circumcenter of an acute triangle $ABC$. Line $OA$ intersects the altitudes of $ABC$ through $B$ and $C$ at $P$ and $Q$, respectively. The altitudes meet at $H$. Prove that the circumcenter of triangle $PQH$ lies on a median of triangle $ABC$.
2019 Sharygin Geometry Olympiad, 7
Let $AH_A$, $BH_B$, $CH_C$ be the altitudes of the acute-angled $\Delta ABC$. Let $X$ be an arbitrary point of segment $CH_C$, and $P$ be the common point of circles with diameters $H_CX$ and BC, distinct from $H_C$. The lines $CP$ and $AH_A$ meet at point $Q$, and the lines $XP$ and $AB$ meet at point $R$. Prove that $A, P, Q, R, H_B$ are concyclic.
1971 AMC 12/AHSME, 28
Nine lines parallel to the base of a triangle divide the other sides each into $10$ equal segments and the area into $10$ distinct parts. If the area of the largest of these parts is $38$, then the area of the original triangle is
$\textbf{(A) }180\qquad\textbf{(B) }190\qquad\textbf{(C) }200\qquad\textbf{(D) }210\qquad \textbf{(E) }240$
1993 Nordic, 2
A hexagon is inscribed in a circle of radius $r$. Two of the sides of the hexagon have length $1$, two have length $2$ and two have length $3$. Show that $r$ satisfies the equation $2r^3 - 7r - 3 = 0$.
2002 National Olympiad First Round, 10
Which of the following does not divide the number of ordered pairs $(x,y)$ of integers satisfying the equation $x^3 - 13y^3 = 1453$?
$
\textbf{a)}\ 2
\qquad\textbf{b)}\ 3
\qquad\textbf{c)}\ 5
\qquad\textbf{d)}\ 7
\qquad\textbf{e)}\ \text{None of above}
$
2007 Indonesia TST, 2
Let $ ABCD$ be a convex quadrtilateral such that $ AB$ is not parallel with $ CD$. Let $ \Gamma_1$ be a circle that passes through $ A$ and $ B$ and is tangent to $ CD$ at $ P$. Also, let $ \Gamma_2$ be a circle that passes through $ C$ and $ D$ and is tangent to $ AB$ at $ Q$. Let the circles $ \Gamma_1$ and $ \Gamma_2$ intersect at $ E$ and $ F$. Prove that $ EF$ passes through the midpoint of $ PQ$ iff $ BC \parallel AD$.
2004 AIME Problems, 11
A right circular cone has a base with radius 600 and height $200\sqrt{7}$. A fly starts at a point on the surface of the cone whose distance from the vertex of the cone is 125, and crawls along the surface of the cone to a point on the exact opposite side of the cone whose distance from the vertex is $375\sqrt{2}$. Find the least distance that the fly could have crawled.