Found problems: 25757
2002 Romania National Olympiad, 4
$a)$ An equilateral triangle of sides $a$ is given and a triangle $MNP$ is constructed under the following conditions: $P\in (AB),M\in (BC),N\in (AC)$, such that $MP\perp AB,NM\perp BC$ and $PN\perp AC$. Find the length of the segment $MP$.
$b)$ Show that for any acute triangle $ABC$ one can find points $P\in (AB),M\in (BC),N\in (AC)$ such that $MP\perp AB,NM\perp BC$ and $PN\perp AC$.
2003 Estonia Team Selection Test, 6
Let $ABC$ be an acute-angled triangle, $O$ its circumcenter and $H$ its orthocenter. The orthogonal projection of the vertex $A$ to the line $BC$ lies on the perpendicular bisector of the segment $AC$. Compute $\frac{CH}{BO}$ .
(J. Willemson)
2006 Bulgaria Team Selection Test, 1
[b]Problem 4.[/b] Let $k$ be the circumcircle of $\triangle ABC$, and $D$ the point on the arc $\overarc{AB},$ which do not pass through $C$. $I_A$ and $I_B$ are the centers of incircles of $\triangle ADC$ and $\triangle BDC$, respectively. Proove that the circumcircle of $\triangle I_AI_BC$ touches $k$ iff \[ \frac{AD}{BD}=\frac{AC+CD}{BC+CD}. \]
[i] Stoyan Atanasov[/i]
2020 AMC 10, 20
Quadrilateral $ABCD$ satisfies $\angle ABC = \angle ACD = 90^{\circ}, AC = 20$, and $CD = 30$. Diagonals $\overline{AC}$ and $\overline{BD}$ intersect at point $E$, and $AE = 5$. What is the area of quadrilateral $ABCD$?
$\textbf{(A) } 330 \qquad\textbf{(B) } 340 \qquad\textbf{(C) } 350 \qquad\textbf{(D) } 360 \qquad\textbf{(E) } 370$
2013 AMC 10, 2
Mr Green measures his rectangular garden by walking two of the sides and finds that it is 15 steps by 20 steps. Each or Mr Green's steps is two feet long. Mr Green expect half a pound of potatoes per square foot from his garden. How many pounds of potatoes does Mr Green expect from his garden?
$ \textbf{(A) }600\qquad\textbf{(B) }800\qquad\textbf{(C) }1000\qquad\textbf{(D) }1200\qquad\textbf{(E) }1400 $
2018 Morocco TST., 4
Let $ABCDE$ be a convex pentagon such that $AB=BC=CD$, $\angle{EAB}=\angle{BCD}$, and $\angle{EDC}=\angle{CBA}$. Prove that the perpendicular line from $E$ to $BC$ and the line segments $AC$ and $BD$ are concurrent.
2020 Stanford Mathematics Tournament, 8
Consider an acute angled triangle $\vartriangle ABC$ with side lengths $7$, $8$, and $9$. Let $H$ be the orthocenter of $ABC$. Let $\Gamma_A$, $\Gamma_B$, and $\Gamma_C$ be the circumcircles of $\vartriangle BCH$, $\vartriangle CAH$, and $\vartriangle ABH$ respectively. Find the area of the region $\Gamma_A \cup \Gamma_B \cup \Gamma_C$ (the set of all points contained in at least one of $\Gamma_A$, $\Gamma_B$, and $\Gamma_C$).
1985 Iran MO (2nd round), 3
Find the angle between two common sections of the page $2x+y-z=0$ and the cone $4x^2-y^2+3z^2=0.$
1947 Putnam, A3
Given a triangle $ABC$ with an interior point $P$ and points $Q_1 , Q_2$ not lying on any of the segments $AB , AC ,BC,$ $AP ,BP ,CP,$ show that there does not exist a polygonal line $K$ joining $Q_1$ and $Q_2$ such that
i) $K$ crosses each segment exactly once,
ii) $K$ does not intersect itself
iii) $K$ does not pass through $A, B , C$ or $P.$
2001 China Second Round Olympiad, 1
Let $O,H$ be the circumcenter and orthocenter of $\triangle ABC,$ respectively. Line $AH$ and $BC$ intersect at $D,$ Line $BH$ and $AC$ intersect at $E,$ Line $CH$ and $AB$ intersect at $F,$ Line $AB$ and $ED$ intersect at $M,$ $AC$ and $FD$ intersect at $N.$ Prove that
$(1)OB\perp DF,OC\perp DE;$
$(2)OH\perp MN.$
2001 Brazil National Olympiad, 3
$ABC$ is a triangle
$E, F$ are points in $AB$, such that $AE = EF = FB$
$D$ is a point at the line $BC$ such that $ED$ is perpendiculat to $BC$
$AD$ is perpendicular to $CF$.
The angle CFA is the triple of angle BDF. ($3\angle BDF = \angle CFA$)
Determine the ratio $\frac{DB}{DC}$.
%Edited!%
1991 IMTS, 4
Let $n$ points with integer coordinates be given in the $xy$-plane. What is the minimum value of $n$ which will ensure that three of the points are the vertices of a triangel with integer (possibly, 0) area?
2002 IMO Shortlist, 4
Circles $S_1$ and $S_2$ intersect at points $P$ and $Q$. Distinct points $A_1$ and $B_1$ (not at $P$ or $Q$) are selected on $S_1$. The lines $A_1P$ and $B_1P$ meet $S_2$ again at $A_2$ and $B_2$ respectively, and the lines $A_1B_1$ and $A_2B_2$ meet at $C$. Prove that, as $A_1$ and $B_1$ vary, the circumcentres of triangles $A_1A_2C$ all lie on one fixed circle.
2002 USAMTS Problems, 4
The vertices of a cube have coordinates $(0,0,0),(0,0,4),(0,4,0),(0,4,4),(4,0,0)$,$(4,0,4),(4,4,0)$, and $(4,4,4)$. A plane cuts the edges of this cube at the points $(0,2,0),(1,0,0),(1,4,4)$, and two other points. Find the coordinates of the other two points.
2014 Contests, 2
Let $ABCD$ be a trapezoid with bases $AB$ and $CD$, inscribed in a circle of center $O$. Let $P$ be the intersection of the lines $BC$ and $AD$. A circle through $O$ and $P$ intersects the segments $BC$ and $AD$ at interior points $F$ and $G$, respectively. Show that $BF=DG$.
Novosibirsk Oral Geo Oly IX, 2017.3
Medians $AA_1, BB_1, CC_1$ and altitudes $AA_2, BB_2, CC_2$ are drawn in triangle $ABC$ . Prove that the length of the broken line $A_1B_2C_1A_2B_1C_2A_1$ is equal to the perimeter of triangle $ABC$.
1980 IMO, 1
Determine all positive integers $n$ such that the following statement holds: If a convex polygon with with $2n$ sides $A_1 A_2 \ldots A_{2n}$ is inscribed in a circle and $n-1$ of its $n$ pairs of opposite sides are parallel, which means if the pairs of opposite sides
\[(A_1 A_2, A_{n+1} A_{n+2}), (A_2 A_3, A_{n+2} A_{n+3}), \ldots , (A_{n-1} A_n, A_{2n-1} A_{2n})\]
are parallel, then the sides \[ A_n A_{n+1}, A_{2n} A_1\] are parallel as well.
2005 Bulgaria National Olympiad, 4
Let $ABC$ be a triangle with $AC\neq BC$, and let $A^{\prime }B^{\prime }C$ be a triangle obtained from $ABC$ after some rotation centered at $C$. Let $M,E,F$ be the midpoints of the segments $BA^{\prime },AC$ and $CB^{\prime }$ respectively. If $EM=FM$, find $\widehat{EMF}$.
2004 Greece JBMO TST, 1
Let $ABCD$ be a convex quadrilateral with $\angle A=60^o$. Let $E$ and $Z$ be the symmetric points of $A$ wrt $BC$ and $CD$ respectively. If the points $B,D,E$ and $Z$ are collinear, then calculate the angle $\angle BCD$.
2018 AIME Problems, 12
Let $ABCD$ be a convex quadrilateral with $AB=CD=10$, $BC=14$, and $AD=2\sqrt{65}$. Assume that the diagonals of $ABCD$ intersect at point $P$, and that the sum of the areas of $\triangle APB$ and $\triangle CPD$ equals the sum of the areas of $\triangle BPC$ and $\triangle APD$. Find the area of quadrilateral $ABCD$.
2019 Ukraine Team Selection Test, 3
Given an acute triangle $ABC$ . It's altitudes $AA_1 , BB_1$ and $CC_1$ intersect at a point $H$ , the orthocenter of $\vartriangle ABC$. Let the lines $B_1C_1$ and $AA_1$ intersect at a point $K$, point $M$ be the midpoint of the segment $AH$. Prove that the circumscribed circle of $\vartriangle MKB_1$ touches the circumscribed circle of $\vartriangle ABC$ if and only if $BA1 = 3A1C$.
(Bondarenko Mykhailo)
2016 All-Russian Olympiad, 2
Diagonals $AC,BD$ of cyclic quadrilateral $ABCD$ intersect at $P$.Point $Q$ is on$BC$ (between$B$ and $C$) such that $PQ \perp AC$.Prove that the line passes through the circumcenters of triangles $APD$ and $BQD$ is parallel to $AD$.(A.Kuznetsov)
2021 Harvard-MIT Mathematics Tournament., 9
Let $ABCD$ be a trapezoid with $AB \parallel CD$ and $AD = BD$. Let $M$ be the midpoint of $AB,$ and let $P \neq C$ be the second intersection of the circumcircle of $\triangle BCD$ and the diagonal $AC.$ Suppose that $BC = 27, CD = 25,$ and $AP = 10.$ If $MP = \tfrac {a}{b}$ for relatively prime positive integers $a$ and $b,$ compute $100a + b$.
1998 Estonia National Olympiad, 2
In a triangle $ABC, A_1,B_1,C_1$ are the midpoints of segments $BC,CA,AB, A_2,B_2,C_2$ are the midpoints of segments $B_1C_1,C_1A_1,A_1B_1$, and $A_3,B_3,C_3$ are the incenters of triangles $B_1AC_1,C_1BA_1,A_1CB_1$, respectively. Show that the lines $A_2A_3,B_2B_3$ and $C_2C_3$ are concurrent.
1995 Portugal MO, 4
The diameter $[AC]$ of a circle is divided into four equal segments by points $P, M$ and $Q$. Consider a segment $[BD]$ that passes through $P$ and cuts the circle at $B$ and $D$, such that $PD =\frac{3}{2} AP$. Knowing that the area of the triangle $[ABP]$ has measure $1$ cm$^2$ , calculate the area of $[ABCD]$?
[img]https://1.bp.blogspot.com/-ibre0taeRo8/X4KiWWSROEI/AAAAAAAAMl4/xFNfpQBxmMMVLngp5OWOXRLMuaxf3nolQCLcBGAsYHQ/s154/1995%2Bportugal%2Bp5.png[/img]