Found problems: 25757
2017 Harvard-MIT Mathematics Tournament, 21
Let $P$ and $A$ denote the perimeter and area respectively of a right triangle with relatively prime integer side-lengths. Find the largest possible integral value of $\frac{P^2}{A}$
[color = red]The official statement does not have the final period.[/color]
2004 Uzbekistan National Olympiad, 4
In triangle $ABC$ $CL$ is a bisector($L$ lies $AB$) $I$ is center incircle of $ABC$. $G$ is intersection medians. If $a=BC, b=AC, c=AB$ and $CL\perp GI$ then prove that $\frac{a+b+c}{3}=\frac{2ab}{a+b}$
2025 Kosovo EGMO Team Selection Test, P1
Let $ABC$ be an acute triangle. Let $D$ and $E$ be the feet of the altitudes of the triangle $ABC$ from $A$ and $B$, respectively. Let $F$ be the reflection of the point $A$ over $BC$. Let $G$ be a point such that the quadrilateral $ABCG$ is a parallelogram. Show that the circumcircles of triangles $BCF$ , $ACG$ and $CDE$ are concurrent on a point different from $C$.
2025 Belarusian National Olympiad, 11.6
Point $H$ is the foot of the altitude from $A$ of triangle $ABC$. On the lines $AB$ and $AC$ points $X$ and $Y$ are marked such that the circumcircles of triangles $BXH$ and $CYH$ are tangent, call this circles $w_B$ and $w_C$ respectively. Tangent lines to circles $w_B$ and $w_C$ at $X$ and $Y$ intersect at $Z$.
Prove that $ZA=ZH$.
[i]Vadzim Kamianetski[/i]
1993 Miklós Schweitzer, 6
Let $P_1 , P_2 , ...$ be arbitrary points and A be a connected compact set in the plane with a diameter greater than 4. Show that for some point P in A , $\overline {PP_1} \cdot \overline {PP_2} \cdots \overline {PP_n}>1$. Furthermore, prove that this is no longer necessarily true for compact sets of diameter 4.
2002 China Team Selection Test, 1
Given triangle $ ABC$ and $ AB\equal{}c$, $ AC\equal{}b$ and $ BC\equal{}a$ satisfying $ a \geq b \geq c$, $ BE$ and $ CF$ are two interior angle bisectors. $ P$ is a point inside triangle $ AEF$. $ R$ and $ Q$ are the projections of $ P$ on sides $ AB$ and $ AC$.
Prove that $ PR \plus{} PQ \plus{} RQ < b$.
2003 China Team Selection Test, 1
Triangle $ABC$ is inscribed in circle $O$. Tangent $PD$ is drawn from $A$, $D$ is on ray $BC$, $P$ is on ray $DA$. Line $PU$ ($U \in BD$) intersects circle $O$ at $Q$, $T$, and intersect $AB$ and $AC$ at $R$ and $S$ respectively. Prove that if $QR=ST$, then $PQ=UT$.
2008 Moldova Team Selection Test, 3
In triangle $ ABC$ the bisector of $ \angle ACB$ intersects $ AB$ at $ D$. Consider an arbitrary circle $ O$ passing through $ C$ and $ D$, so that it is not tangent to $ BC$ or $ CA$. Let $ O\cap BC \equal{} \{M\}$ and $ O\cap CA \equal{} \{N\}$.
a) Prove that there is a circle $ S$ so that $ DM$ and $ DN$ are tangent to $ S$ in $ M$ and $ N$, respectively.
b) Circle $ S$ intersects lines $ BC$ and $ CA$ in $ P$ and $ Q$ respectively. Prove that the lengths of $ MP$ and $ NQ$ do not depend on the choice of circle $ O$.
2000 AMC 8, 25
The area of rectangle $ABCD$ is $72$. If point $A$ and the midpoints of $\overline{BC}$ and $\overline{CD}$ are joined to form a triangle, the area of that triangle is
[asy]
pair A,B,C,D;
A = (0,8); B = (9,8); C = (9,0); D = (0,0);
draw(A--B--C--D--A--(9,4)--(4.5,0)--cycle);
label("$A$",A,NW);
label("$B$",B,NE);
label("$C$",C,SE);
label("$D$",D,SW);
[/asy]
$\text{(A)}\ 21 \qquad \text{(B)}\ 27 \qquad \text{(C)}\ 30 \qquad \text{(D)}\ 36 \qquad \text{(E)}\ 40$
LMT Guts Rounds, 2023 S
[u]Round 6 [/u]
[b]p16.[/b] Triangle $ABC$ with $AB < AC$ is inscribed in a circle. Point $D$ lies on the circle and point $E$ lies on side $AC$ such that $ABDE$ is a rhombus. Given that $CD = 4$ and $CE = 3$, compute $AD^2$.
[b]p17.[/b] Wam and Sang are walking on the coordinate plane. Both start at the origin. Sang walks to the right at a constant rate of $1$ m/s. At any positive time $t$ (in seconds),Wam walks with a speed of $1$ m/s with a direction of $t$ radians clockwise of the positive $x$-axis. Evaluate the square of the distance betweenWamand Sang in meters after exactly $5\pi$ seconds.
[b]p18.[/b] Mawile is playing a game against Salamance. Every turn,Mawile chooses one of two moves: Sucker Punch or IronHead, and Salamance chooses one of two moves: Dragon Dance or Earthquake. Mawile wins if the moves used are Sucker Punch and Earthquake, or Iron Head and Dragon Dance. Salamance wins if the moves used are Iron Head and Earthquake. If the moves used are Sucker Punch and Dragon Dance, nothing happens and a new turn begins. Mawile can only use Sucker Punch up to $8$ times. All other moves can be used indefinitely. Assuming bothMawile and Salamance play optimally, find the probability thatMawile wins.
[u]Round 7 [/u]
[b]p19.[/b] Ephram is attempting to organize what rounds everyone is doing for the NEAML competition. There are $4$ rounds, of which everyone must attend exactly $2$. Additionally, of the 6 people on the team(Ephram,Wam, Billiam, Hacooba,Matata, and Derke), exactly $3$ must attend every round. In how many different ways can Ephram organize the teams like this?
[b]p20.[/b] For some $4$th degree polynomial $f (x)$, the following is true:
$\bullet$ $f (-1) = 1$.
$\bullet$ $f (0) = 2$.
$\bullet$ $f (1) = 4$.
$\bullet$ $f (-2) = f (2) = f (3)$.
Find $f (4)$.
[b]p21.[/b] Find the minimum value of the expression $\sqrt{5x^2-16x +16}+\sqrt{5x^2-18x +29}$ over all real $x$.
[u]Round 8 [/u]
[b]p22.[/b] Let $O$ and $I$ be the circumcenter and incenter, respectively, of $\vartriangle ABC$ with $AB = 15$, $BC = 17$, and $C A = 16$. Let $X \ne A$ be the intersection of line $AI$ and the circumcircle of $\vartriangle ABC$. Find the area of $\vartriangle IOX$.
[b]p23.[/b] Find the sum of all integers $x$ such that there exist integers $y$ and $z$ such that $$x^2 + y^2 = 3(2016^z )+77.$$
[b]p24.[/b] Evaluate $$ \left \lfloor \sum^{2022}_{i=1} \frac{1}{\sqrt{i}} \right \rfloor = \left \lfloor \frac{1}{\sqrt{1}} +\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+ \frac{1}{\sqrt{2022}}\right \rfloor$$
[u]Round 9[/u]
[b]p25.[/b]Either:
1. Submit $-2$ as your answer and you’ll be rewarded with two points OR
2. Estimate the number of teams that choose the first option. If your answer is within $1$ of the correct answer, you’ll be rewarded with three points, and if you are correct, you’ll receive ten points.
[b]p26.[/b] Jeff is playing a turn-based game that starts with a positive integer $n$.
Each turn, if the current number is $n$, Jeff must choose one of the following:
1. The number becomes the nearest perfect square to $n$
2. The number becomes $n-a$, where $a$ is the largest digit in $n$
Let $S(k)$ be the least number of turns Jeff needs to get from the starting number $k$ to $0$. Estimate $$\sum^{2023}_{k=1}S(k).$$ If your estimation is $E$ and the actual answer is $A$, you will receive $\max \left( \left \lfloor 10 - \left| \frac{E-A}{6000} \right| \right \rfloor , 0 \right)$ points.
[b]p27.[/b] Estimate the smallest positive integer n such that if $N$ is the area of the $n$-sided regular polygon with circumradius $100$, $10000\pi -N < 1$ is true.
If your estimation is $E$ and the actual answer is $A$, you will receive $ \max \left \lfloor \left( 10 - \left| 10 \cdot \log_3 \left( \frac{A}{E}\right) \right|\right| ,0\right \rfloor.$ points.
PS. You should use hide for answers. Rounds 1-5 have been posted [url=https://artofproblemsolving.com/community/c3h3167360p28825713]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2002 Moldova National Olympiad, 1
Several pupils wrote a solution of a math problem on the blackboard on the break. When the teacher came in, a pupil was just clearing the blackboard, so the teacher could only observe that there was a rectangle with the sides of integer lenghts and a diagonal of lenght $ 2002$. Then the teacher pointed out that there was a computation error in pupils' solution. Why did he conclude that?
2014 Harvard-MIT Mathematics Tournament, 12
Find a nonzero monic polynomial $P(x)$ with integer coefficients and minimal degree such that $P(1-\sqrt[3]2+\sqrt[3]4)=0$. (A polynomial is called $\textit{monic}$ if its leading coefficient is $1$.)
2011 Kosovo National Mathematical Olympiad, 4
A point $P$ is given in the square $ABCD$ such that $\overline{PA}=3$, $\overline{PB}=7$ and $\overline{PD}=5$. Find the area of the square.
Kharkiv City MO Seniors - geometry, 2018.11.4
The line $\ell$ parallel to the side $BC$ of the triangle $ABC$, intersects its sides $AB,AC$ at the points $D,E$, respectively. The circumscribed circle of triangle $ABC$ intersects line $\ell$ at points $F$ and $G$, such that points $F,D,E,G$ lie on line $\ell$ in this order. The circumscribed circles of the triangles $FEB$ and $DGC$ intersect at points $P$ and $Q$. Prove that points $A, P$ and $Q$ are collinear.
1999 Moldova Team Selection Test, 4
Outside the triangle $ABC$ the isosceles triangles $AFB, BDC$ and $CEA$ with the bases $AB, BC$ and $CA$ respectively, are constructed. Show that the perpendiculars form $A, B$ and $C$ on $(EF), (FD)$ and $(DE)$, respectively, are concurrent.
2019 BMT Spring, 16
Let $ABC$ be a triangle with $AB = 26$, $BC = 51$, and $CA = 73$, and let $O$ be an arbitrary point in the interior of $\vartriangle ABC$. Lines $\ell_1$, $\ell_2$, and $\ell_3$ pass through $O$ and are parallel to $\overline{AB}$, $\overline{BC}$, and $\overline{CA}$, respectively. The intersections of $\ell_1$, $\ell_2$, and $\ell_3$ and the sides of $\vartriangle ABC$ form a hexagon whose area is $A$. Compute the minimum value of $A$.
2001 Bundeswettbewerb Mathematik, 1
10 vertices of a regular 100-gon are coloured red and ten other (distinct) vertices are coloured blue. Prove that there is at least one connection edge (segment) of two red which is as long as the connection edge of two blue points.
[hide="Hint"]Possible approaches are pigeon hole principle, proof by contradiction, consider turns (bijective congruent mappings) which maps red in blue points.
[/hide]
2021 BMT, 5
Anthony the ant is at point $A$ of regular tetrahedron $ABCD$ with side length $4$. Anthony wishes to crawl on the surface of the tetrahedron to the midpoint of $\overline{BC}$. However, he does not want to touch the interior of face $\vartriangle ABC$, since it is covered with lava. What is the shortest distance Anthony must travel?
2006 Grigore Moisil Urziceni, 1
Consider two quadrilaterals $ A_1B_1C_1D_1,A_2B_2C_2D_2 $ and the points $ M,N,P,Q,E_1,F_1,E_2,F_2 $ representing the middle of the segments $ A_1A_2,B_1B_2,C_1C_2,D_1D_2,B_1D_1,A_1C_1,B_2D_2,A_2,C_2, $ respectively. Show that $ MNPQ $ is a parallelogram if and only if $ E_1F_1E_2F_2 $ is a parallelogram.
[i]Cristinel Mortici[/i]
2010 AMC 8, 13
The lengths of the sides of a triangle in inches are three consecutive integers. The length of the shorter side is $30\%$ of the perimeter. What is the length of the longest side?
$ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 11 $
2013 Danube Mathematical Competition, 1
Given six points on a circle, $A, a, B, b, C, c$, show that the Pascal lines of the hexagrams $AaBbCc, AbBcCa, AcBaCb$ are concurrent.
1986 China National Olympiad, 4
Given a $\triangle ABC$ with its area equal to $1$, suppose that the vertices of quadrilateral $P_1P_2P_3P_4$ all lie on the sides of $\triangle ABC$. Show that among the four triangles $\triangle P_1P_2P_3, \triangle P_1P_2P_4, \triangle P_1P_3P_4, \triangle P_2P_3P_4$ there is at least one whose area is not larger than $1/4$.
2014 Cono Sur Olympiad, 3
Let $ABCD$ be a rectangle and $P$ a point outside of it such that $\angle{BPC} = 90^{\circ}$ and the area of the pentagon $ABPCD$ is equal to $AB^{2}$.
Show that $ABPCD$ can be divided in 3 pieces with straight cuts in such a way that a square can be built using those 3 pieces, without leaving any holes or placing pieces on top of each other.
Note: the pieces can be rotated and flipped over.
2017 Estonia Team Selection Test, 10
Let $ABC$ be a triangle with $AB = \frac{AC}{2 }+ BC$. Consider the two semicircles outside the triangle with diameters $AB$ and $BC$. Let $X$ be the orthogonal projection of $A$ onto the common tangent line of those semicircles. Find $\angle CAX$.
2004 Kazakhstan National Olympiad, 8
Let $ ABCD$ be a convex quadrilateral. The perpendicular bisectors of its sides $ AB$ and $ CD$ meet at $ Y$. Denote by $ X$ a point inside the quadrilateral $ ABCD$ such that $ \measuredangle ADX \equal{} \measuredangle BCX < 90^{\circ}$ and $ \measuredangle DAX \equal{} \measuredangle CBX < 90^{\circ}$. Show that $ \measuredangle AYB \equal{} 2\cdot\measuredangle ADX$.