This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

2017 Harvard-MIT Mathematics Tournament, 18

Tags: geometry
Let $ABCD$ be a quadrilateral with side lengths $AB = 2$, $BC = 3$, $CD = 5$, and $DA = 4$. What is the maximum possible radius of a circle inscribed in quadrilateral $ABCD$?

2017 India National Olympiad, 1

In the given figure, $ABCD$ is a square sheet of paper. It is folded along $EF$ such that $A$ goes to a point $A'$ different from $B$ and $C$, on the side $BC$ and $D$ goes to $D'$. The line $A'D'$ cuts $CD$ in $G$. Show that the inradius of the triangle $GCA'$ is the sum of the inradii of the triangles $GD'F$ and $A'BE$. [asy] size(5cm); pair A=(0,0),B=(1,0),C=(1,1),D=(0,1),Ap=(1,0.333),Dp,Ee,F,G; Ee=extension(A,B,(A+Ap)/2,bisectorpoint(A,Ap)); F=extension(C,D,(A+Ap)/2,bisectorpoint(A,Ap)); Dp=reflect(Ee,F)*D; G=extension(C,D,Ap,Dp); D(MP("A",A,W)--MP("E",Ee,S)--MP("B",B,E)--MP("A^{\prime}",Ap,E)--MP("C",C,E)--MP("G",G,NE)--MP("D^{\prime}",Dp,N)--MP("F",F,NNW)--MP("D",D,W)--cycle,black); draw(Ee--Ap--G--F); dot(A);dot(B);dot(C);dot(D);dot(Ap);dot(Dp);dot(Ee);dot(F);dot(G); draw(Ee--F,dashed); [/asy]

2014-2015 SDML (High School), 9

The quadrilateral $ABCD$ can be inscribed in a circle and $\angle{ABD}$ is a right angle. $M$ is the midpoint of $BD$, where $CM$ is an altitude of $\triangle{BCD}$. If $AB=14$ and $CD=6\sqrt{11}$, what [is] the length of $AD$? $\text{(A) }36\qquad\text{(B) }38\qquad\text{(C) }41\qquad\text{(D) }42\qquad\text{(E) }44$

2021 European Mathematical Cup, 2

Let $ABC$ be an acute-angled triangle such that $|AB|<|AC|$. Let $X$ and $Y$ be points on the minor arc ${BC}$ of the circumcircle of $ABC$ such that $|BX|=|XY|=|YC|$. Suppose that there exists a point $N$ on the segment $\overline{AY}$ such that $|AB|=|AN|=|NC|$. Prove that the line $NC$ passes through the midpoint of the segment $\overline{AX}$. \\ \\ (Ivan Novak)

2005 Purple Comet Problems, 3

Four rectangular strips each measuring $4$ by $16$ inches are laid out with two vertical strips crossing two horizontal strips forming a single polygon which looks like a tic-tack-toe pattern. What is the perimeter of this polygon? [asy] size(100); draw((1,0)--(2,0)--(2,1)--(3,1)--(3,0)--(4,0)--(4,1)--(5,1)--(5,2)--(4,2)--(4,3)--(5,3)--(5,4)--(4,4)--(4,5)--(3,5)--(3,4)--(2,4)--(2,5)--(1,5)--(1,4)--(0,4)--(0,3)--(1,3)--(1,2)--(0,2)--(0,1)--(1,1)--(1,0)); draw((2,2)--(2,3)--(3,3)--(3,2)--cycle); [/asy]

MOAA Team Rounds, 2022.15

Tags: geometry
Let $I_B, I_C$ be the $B, C$-excenters of triangle $ABC$, respectively. Let $O$ be the circumcenter of $ABC$. If $BI_B$ is perpendicular to $AO$, $AI_C = 3$ and $AC = 4\sqrt2$, then $AB^2$ can be expressed as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m + n$. Note: In triangle $\vartriangle ABC$, the $A$-excenter is the intersection of the exterior angle bisectors of $\angle ABC$ and $\angle ACB$. The $B$-excenter and $C$-excenter are defined similarly.

LMT Guts Rounds, 2012

[u]Round 1[/u] [b]p1.[/b] A $\$100$ TV has its price increased by $10\%$. The new price is then decreased by $10\%$. What is the current price of the TV? [b]p2.[/b] If $9w + 8x + 7y = 42$ and $w + 2x + 3y = 8$, then what is the value of $100w + 101x + 102y$? [b]p3.[/b] Find the number of positive factors of $37^3 \cdot 41^3$. [u]Round 2[/u] [b]p4.[/b] Three hoses work together to fill up a pool, and each hose expels water at a constant rate. If it takes the first, second, and third hoses 4, 6, and 12 hours, respectively, to fill up the pool alone, then how long will it take to fill up the pool if all three hoses work together? [b]p5.[/b] A semicircle has radius $1$. A smaller semicircle is inscribed in the larger one such that the two bases are parallel and the arc of the smaller is tangent to the base of the larger. An even smaller semicircle is inscribed in the same manner inside the smaller of the two semicircles, and this procedure continues indefinitely. What is the sum of all of the areas of the semicircles? [b]p6.[/b] Given that $P(x)$ is a quadratic polynomial with $P(1) = 0$, $P(2) = 0$, and $P(0) = 2012$, find $P(-1)$. [u]Round 3[/u] [b]p7.[/b] Darwin has a paper circle. He labels one point on the circumference as $A$. He folds $A$ to every point on the circumference on the circle and undoes it. When he folds $A$ to any point $P$, he makes a blue mark on the point where $\overline{AP}$ and the made crease intersect. If the area of Darwin paper circle is 80, then what is the area of the region surrounded by blue? [b]p8.[/b] Α rectangular wheel of dimensions $6$ feet by $8$ feet rolls for $28$ feet without sliding. What is the total distance traveled by any corner on the rectangle during this roll? [b]p9[/b]. How many times in a $24$-hour period do the minute hand and hour hand of a $12$-hour clock form a right angle? [u]Round 4[/u] The answers in this section all depend on each other. Find smallest possible solution set. [b]p10.[/b] Let B be the answer to problem $11$. Right triangle $ACD$ has a right angle at $C$. Squares $ACEF$ and $ADGH$ are drawn such that points $D$ and $E$ do not coincide and points $E$ and $H$ do not coincide. The midpoints of the sides of $ADGH$ are connected to form a smaller square with area $B.$ If the area of $ACEF$ is also $B$, then find the length $CD$ rounded up to the nearest integer. [b]p11.[/b] Let $C$ be the answer to problem $12$. Find the sum of the digits of $C$. [b]p12.[/b] Let $A$ be the answer to problem $10$. Given that $a_0 = 1$, $a_1 = 2$, and that $a_n = 3a_{n-1 }-a_{n-2}$ for $n \ge 2$, find $a_A$. PS. You should use hide for answers.Rounds 5-8 are [url=https://artofproblemsolving.com/community/c3h3134466p28406321]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3134489p28406583]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1999 Mongolian Mathematical Olympiad, Problem 2

Tags: geometry
The rays $l_1,l_2,\ldots,l_{n-1}$ divide a given angle $ABC$ into $n$ equal parts. A line $l$ intersects $AB$ at $A_1$, $BC$ at $A_{n+1}$, and $l_i$ at $A_{i+1}$ for $i=1,\ldots,n-1$. Show that the quantity $$\left(\frac1{BA_1}+\frac1{BA_{n+1}}\right)\left(\frac1{BA_1}+\frac1{BA_2}+\ldots+\frac1{BA_{n+1}}\right)^{-1}$$is independent of the line $l$, and compute its value if $\angle ABC=\phi$.

2009 AMC 10, 10

Tags: geometry , ratio
Triangle $ ABC$ has a right angle at $ B$. Point $ D$ is the foot of the altitude from $ B$, $ AD\equal{}3$, and $ DC\equal{}4$. What is the area of $ \triangle{ABC}$? [asy]unitsize(5mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4; pair B=(0,0), C=(sqrt(28),0), A=(0,sqrt(21)); pair D=foot(B,A,C); pair[] ps={B,C,A,D}; draw(A--B--C--cycle); draw(B--D); draw(rightanglemark(B,D,C)); dot(ps); label("$A$",A,NW); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,NE); label("$3$",midpoint(A--D),NE); label("$4$",midpoint(D--C),NE);[/asy]$ \textbf{(A)}\ 4\sqrt3 \qquad \textbf{(B)}\ 7\sqrt3 \qquad \textbf{(C)}\ 21 \qquad \textbf{(D)}\ 14\sqrt3 \qquad \textbf{(E)}\ 42$

2017 BMT Spring, 4

Tags: geometry , angle , acute
$2$ darts are thrown randomly at a circular board with center $O$, such that each dart has an equal probability of hitting any point on the board. The points at which they land are marked $A$ and $B$. What is the probability that $\angle AOB$ is acute?

2002 India IMO Training Camp, 19

Let $ABC$ be an acute triangle. Let $DAC,EAB$, and $FBC$ be isosceles triangles exterior to $ABC$, with $DA=DC, EA=EB$, and $FB=FC$, such that \[ \angle ADC = 2\angle BAC, \quad \angle BEA= 2 \angle ABC, \quad \angle CFB = 2 \angle ACB. \] Let $D'$ be the intersection of lines $DB$ and $EF$, let $E'$ be the intersection of $EC$ and $DF$, and let $F'$ be the intersection of $FA$ and $DE$. Find, with proof, the value of the sum \[ \frac{DB}{DD'}+\frac{EC}{EE'}+\frac{FA}{FF'}. \]

Novosibirsk Oral Geo Oly IX, 2020.5

Angle bisectors $AA', BB'$and $CC'$ are drawn in triangle $ABC$ with angle $\angle B= 120^o$. Find $\angle A'B'C'$.

2023 Yasinsky Geometry Olympiad, 4

$ABC$ is an acute triangle and $AD$, $BE$ and $CF$ are the altitudes, with $H$ being the point of intersection of these altitudes. Points $A_1$, $B_1$, $C_1$ are chosen on rays $AD$, $BE$ and $CF$ respectively such that $AA_1 = HD$, $BB_1 = HE$ and $CC_1 =HF$. Let $A_2$, $B_2$ and $C_2$ be midpoints of segments $A_1D$, $B_1E$ and $C_1F$ respectively. Prove that $H$, $A_2$, $B_2$ and $C_2$ are concyclic. (Mykhailo Barkulov)

2013 India Regional Mathematical Olympiad, 4

Tags: geometry , ratio
In a triangle $ABC$, points $D$ and $E$ are on segments $BC$ and $AC$ such that $BD=3DC$ and $AE=4EC$. Point $P$ is on line $ED$ such that $D$ is the midpoint of segment $EP$. Lines $AP$ and $BC$ intersect at point $S$. Find the ratio $BS/SD$.

2014 BMO TST, 3

Tags: geometry
From the point $P$ outside a circle $\omega$ with center $O$ draw the tangents $PA$ and $PB$ where $A$ and $B$ belong to $\omega$.In a random point $M$ in the chord $AB$ we draw the perpendicular to $OM$, which intersects $PA$ and $PB$ in $C$ and $D$. Prove that $M$ is the midpoint $CD$.

2012 Kosovo Team Selection Test, 3

If $a,b,c$ are the sides of a triangle and $m_a , m_b, m_c$ are the medians prove that \[4(m_a^2+m_b^2+m_c^2)=3(a^2+b^2+c^2)\]

2005 Turkey Team Selection Test, 2

Let $ABC$ be a triangle such that $\angle A=90$ and $\angle B < \angle C$. The tangent at $A$ to its circumcircle $\Gamma$ meets the line $BC$ at $D$. Let $E$ be the reflection of $A$ across $BC$, $X$ the foot of the perpendicular from $A$ to $BE$, and $Y$ be the midpoint of $AX$. Let the line $BY$ meet $\Gamma$ again at $Z$. Prove that the line $BD$ is tangent to circumcircle of triangle $ADZ$ .

2008 Princeton University Math Competition, A5/B8

Tags: geometry
Infinitesimal Randall Munroe is glued to the center of a pentagon with side length $1$. At each corner of the pentagon is a confused infinitesimal velociraptor. At any time, each raptor is running at one unit per second directly towards the next raptor in the pentagon (in counterclockwise order). How far does each confused raptor travel before it reaches Randall Munroe?

ICMC 5, 1

Let $S$ be a set of $2022$ lines in the plane, no two parallel, no three concurrent. $S$ divides the plane into finite regions and infinite regions. Is it possible for all the finite regions to have integer area? [i]Proposed by Tony Wang[/i]

2021 Turkey Junior National Olympiad, 4

Tags: geometry , tangent
Let $X$ be a point on the segment $[BC]$ of an equilateral triangle $ABC$ and let $Y$ and $Z$ be points on the rays $[BA$ and $[CA$ such that the lines $AX, BZ, CY$ are parallel. If the intersection of $XY$ and $AC$ is $M$ and the intersection of $XZ$ and $AB$ is $N$, prove that $MN$ is tangent to the incenter of $ABC$.

2005 Iran MO (3rd Round), 3

$f(n)$ is the least number that there exist a $f(n)-$mino that contains every $n-$mino. Prove that $10000\leq f(1384)\leq960000$. Find some bound for $f(n)$

1969 IMO Longlists, 39

$(HUN 6)$ Find the positions of three points $A,B,C$ on the boundary of a unit cube such that $min\{AB,AC,BC\}$ is the greatest possible.

2017 India IMO Training Camp, 3

Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\Omega$ with $AC \perp BD$. Let $P=AC \cap BD$ and $W,X,Y,Z$ be the projections of $P$ on the lines $AB, BC, CD, DA$ respectively. Let $E,F,G,H$ be the mid-points of sides $AB, BC, CD, DA$ respectively. (a) Prove that $E,F,G,H,W,X,Y,Z$ are concyclic. (b) If $R$ is the radius of $\Omega$ and $d$ is the distance between its centre and $P$, then find the radius of the circle in (a) in terms of $R$ and $d$.

1986 AIME Problems, 15

Let triangle $ABC$ be a right triangle in the xy-plane with a right angle at $C$. Given that the length of the hypotenuse $AB$ is 60, and that the medians through $A$ and $B$ lie along the lines $y=x+3$ and $y=2x+4$ respectively, find the area of triangle $ABC$.

1958 AMC 12/AHSME, 40

Given $ a_0 \equal{} 1$, $ a_1 \equal{} 3$, and the general relation $ a_n^2 \minus{} a_{n \minus{} 1}a_{n \plus{} 1} \equal{} (\minus{}1)^n$ for $ n \ge 1$. Then $ a_3$ equals: $ \textbf{(A)}\ \frac{13}{27}\qquad \textbf{(B)}\ 33\qquad \textbf{(C)}\ 21\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ \minus{}17$