Found problems: 25757
2018 Sharygin Geometry Olympiad, 8
Restore a triangle $ABC$ by the Nagel point, the vertex $B$ and the foot of the altitude from this vertex.
Cono Sur Shortlist - geometry, 1993.7
Let $ABCD$ be a convex quadrilateral, where $M$ is the midpoint of $DC$, $N$ is the midpoint of $BC$, and $O$ is the intersection of diagonals $AC$ and $BD$. Prove that $O$ is the centroid of the triangle $AMN$ if and only if $ABCD$ is a parallelogram.
1998 Korea Junior Math Olympiad, 5
Regular $2n$-gon is inscribed in the unit circle. Find the sum of the squares of all sides and diagonal lengths in the $2n$-gon.
1997 Baltic Way, 17
A rectangle can be divided into $n$ equal squares. The same rectangle can also be divided into $n+76$ equal squares. Find $n$.
ABMC Online Contests, 2018 Oct
[b]p1.[/b] Compute the greatest integer less than or equal to $$\frac{10 + 12 + 14 + 16 + 18 + 20}{21}$$
[b]p2.[/b] Let$ A = 1$.$B = 2$, $C = 3$, $...$, $Z = 26$. Find $A + B +M + C$.
[b]p3.[/b] In Mr. M's farm, there are $10$ cows, $8$ chickens, and $4$ spiders. How many legs are there (including Mr. M's legs)?
[b]p4.[/b] The area of an equilateral triangle with perimeter $18$ inches can be expressed in the form $a\sqrt{b}{c}$ , where $a$ and $c$ are relatively prime and $b$ is not divisible by the square of any prime. Find $a + b + c$.
[b]p5.[/b] Let $f$ be a linear function so $f(x) = ax + b$ for some $a$ and $b$. If $f(1) = 2017$ and $f(2) = 2018$, what is $f(2019)$?
[b]p6.[/b] How many integers $m$ satisfy $4 < m^2 \le 216$?
[b]p7.[/b] Allen and Michael Phelps compete at the Olympics for swimming. Allen swims $\frac98$ the distance Phelps swims, but Allen swims in $\frac59$ of Phelps's time. If Phelps swims at a rate of $3$ kilometers per hour, what is Allen's rate of swimming? The answer can be expressed as $m/n$ for relatively prime positive integers $m, n$. Find $m + n$.
[b]p8.[/b] Let $X$ be the number of distinct arrangements of the letters in "POONAM," $Y$ be the number of distinct arrangements of the letters in "ALLEN" and $Z$ be the number of distinct arrangements of the letters in "NITHIN." Evaluate $\frac{X+Z}{Y}$ :
[b]p9.[/b] Two overlapping circles, both of radius $9$ cm, have centers that are $9$ cm apart. The combined area of the two circles can be expressed as $\frac{a\pi+b\sqrt{c}+d}{e}$ where $c$ is not divisible by the square of any prime and the fraction is simplified. Find $a + b + c + d + e$.
[b]p10.[/b] In the Boxborough-Acton Regional High School (BARHS), $99$ people take Korean, $55$ people take Maori, and $27$ people take Pig Latin. $4$ people take both Korean and Maori, $6$ people take both Korean and Pig Latin, and $5$ people take both Maori and Pig Latin. $1$ especially ambitious person takes all three languages, and and $100$ people do not take a language. If BARHS does not oer any other languages, how many students attend BARHS?
[b]p11.[/b] Let $H$ be a regular hexagon of side length $2$. Let $M$ be the circumcircle of $H$ and $N$ be the inscribed circle of $H$. Let $m, n$ be the area of $M$ and $N$ respectively. The quantity $m - n$ is in the form $\pi a$, where $a$ is an integer. Find $a$.
[b]p12.[/b] How many ordered quadruples of positive integers $(p, q, r, s)$ are there such that $p + q + r + s \le 12$?
[b]p13.[/b] Let $K = 2^{\left(1+ \frac{1}{3^2} \right)\left(1+ \frac{1}{3^4} \right)\left(1+ \frac{1}{3^8}\right)\left(1+ \frac{1}{3^{16}} \right)...}$. What is $K^8$?
[b]p14.[/b] Neetin, Neeton, Neethan, Neethine, and Neekhil are playing basketball. Neetin starts out with the ball. How many ways can they pass 5 times so that Neethan ends up with the ball?
[b]p15.[/b] In an octahedron with side lengths $3$, inscribe a sphere. Then inscribe a second sphere tangent to the first sphere and to $4$ faces of the octahedron. The radius of the second sphere can be expressed in the form $\frac{\sqrt{a}-\sqrt{b}}{c}$ , where the square of any prime factor of $c$ does not evenly divide into $b$. Compute $a + b + c$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
LMT Team Rounds 2021+, 9
In $\vartriangle ABC$, $AB = 13$, $BC = 14,$ and $C A = 15$. Let $E$ and $F$ be the feet of the altitudes from $B$ onto $C A$, and $C$ onto $AB$, respectively. A line $\ell$ is parallel to $EF$ and tangent to the circumcircle of $ABC$ on minor arc $BC$. Let $X$ and $Y$ be the intersections of $\ell$ with $AB$ and $AC$ respectively. Find $X Y$ .
1974 Poland - Second Round, 3
Prove that the orthogonal projections of the vertex $ D $ of the tetrahedron $ ABCD $ onto the bisectors of the internal and external dihedral angles at the edges $ \overline{AB} $, $ \overline{BC} $ and $ \overline{CA} $ belong to one plane .
2016 Estonia Team Selection Test, 12
The circles $k_1$ and $k_2$ intersect at points $M$ and $N$. The line $\ell$ intersects with the circle $k_1$ at points $A$ and $C$ and with circle $k_2$ at points $B$ and $D$, so that points $A, B, C$ and $D$ are on the line $\ell$ in that order. Let $X$ be a point on line $MN$ such that the point $M$ is between points $X$ and $N$. Lines $AX$ and $BM$ intersect at point $P$ and lines $DX$ and $CM$ intersect at point $Q$. Prove that $PQ \parallel \ell $.
1988 China Team Selection Test, 3
In triangle $ABC$, $\angle C = 30^{\circ}$, $O$ and $I$ are the circumcenter and incenter respectively, Points $D \in AC$ and $E \in BC$, such that $AD = BE = AB$. Prove that $OI = DE$ and $OI \bot DE$.
2023 USAMO, 1
In an acute triangle $ABC$, let $M$ be the midpoint of $\overline{BC}$. Let $P$ be the foot of the perpendicular from $C$ to $AM$. Suppose that the circumcircle of triangle $ABP$ intersects line $BC$ at two distinct points $B$ and $Q$. Let $N$ be the midpoint of $\overline{AQ}$. Prove that $NB=NC$.
[i]Proposed by Holden Mui[/i]
2014 Sharygin Geometry Olympiad, 3
Do there exist convex polyhedra with an arbitrary number of diagonals (a diagonal is a segment joining two vertices of a polyhedron and not lying on the surface of this polyhedron)?
(A. Blinkov)
2008 Vietnam National Olympiad, 2
Given a triangle with acute angle $ \angle BEC,$ let $ E$ be the midpoint of $ AB.$ Point $ M$ is chosen on the opposite ray of $ EC$ such that $ \angle BME \equal{} \angle ECA.$ Denote by $ \theta$ the measure of angle $ \angle BEC.$ Evaluate $ \frac{MC}{AB}$ in terms of $ \theta.$
2019 Bangladesh Mathematical Olympiad, 9
Let $ABCD$ is a convex quadrilateral.The internal angle bisectors of $\angle {BAC}$ and $\angle {BDC}$ meets at $P$.$\angle {APB}=\angle {CPD}$.Prove that $AB+BD=AC+CD$.
2021 CMIMC, 2.6 1.2
In convex quadrilateral $ABCD$, $\angle ADC = 90^\circ + \angle BAC$. Given that $AB = BC = 17$, and $CD = 16$, what is the maximum possible area of the quadrilateral?
[i]Proposed by Thomas Lam[/i]
Durer Math Competition CD Finals - geometry, 2019.C5
$A, B, C, D$ are four distinct points such that triangles $ABC$ and $CBD$ are both equilateral. Find as many circles as you can, which are equidistant from the four points. How can these circles be constructed?
[i]Remark: The distance between a point $P$ and a circle c is measured as follows: we join $P$ and the centre of the circle with a straight line, and measure how much we need to travel along thisline (starting from $P$) to hit the perimeter of the circle. If $P$ is an internal point of the circle, the distance is the length of the shorter such segment. The distance between a circle and itscentre is the radius of the circle.[/i]
1970 Poland - Second Round, 4
Prove that if triangle $T_1$ contains triangle $T_2$, then the perimeter of triangle $T_1$ is not less than the perimeter of triangle $T_2$.
2014 Puerto Rico Team Selection Test, 7
Consider $N$ points in the plane such that the area of a triangle formed by any three of the points does not exceed $1$. Prove that there is a triangle of area not more than $4$ that contains all $N$ points.
2004 Nicolae Coculescu, 4
Let $ H $ denote the orthocenter of an acute triangle $ ABC, $ and $ A_1,A_2,A_3 $ denote the intersections of the altitudes of this triangle with its circumcircle, and $ A',B',C' $ denote the projections of the vertices of this triangle on their opposite sides.
[b]a)[/b] Prove that the sides of the triangle $ A'B'C' $ are parallel to the sides of $ A_1B_1C_1. $
[b]b)[/b] Show that $ B_1C_1\cdot\overrightarrow{HA_1} +C_1A_1\cdot\overrightarrow{HB_1} +A_1B_1\cdot\overrightarrow{HC_1} =0. $
[i]Geoghe Duță[/i]
Oliforum Contest I 2008, 2
Let $ ABCD$ be a cyclic quadrilateral with $ AB>CD$ and $ BC>AD$. Take points $ X$ and $ Y$ on the sides $ AB$ and $ BC$, respectively, so that $ AX\equal{}CD$ and $ AD\equal{}CY$. Let $ M$ be the midpoint of $ XY$. Prove that $ AMC$ is a right angle.
1965 AMC 12/AHSME, 12
A rhombus is inscribed in triangle $ ABC$ in such a way that one of its vertices is $ A$ and two of its sides lie along $ AB$ and $ AC$. If $ \overline{AC} \equal{} 6$ inches, $ \overline{AB} \equal{} 12$ inches, and $ \overline{BC} \equal{} 8$ inches, the side of the rhombus, in inches, is:
$ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 3 \frac {1}{2} \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5$
2007 Flanders Math Olympiad, 3
Let $ABCD$ be a square with side $10$. Let $M$ and $N$ be the midpoints of $[AB]$ and $[BC]$ respectively. Three circles are drawn: one with midpoint $D$ and radius $|AD|$, one with midpoint $M$ and radius $|AM|$, and one with midpoint $N$ and radius $|BN|$. The three circles intersect in the points $R, S$ and $T$ inside the square. Determine the area of $\triangle RST$.
2022 Sharygin Geometry Olympiad, 10.5
Let$ AB$ and $AC$ be the tangents from a point $A$ to a circle $ \Omega$. Let $M$ be the midpoint of $BC$ and $P$ be an arbitrary point on this segment. A line $AP$ meets $ \Omega$ at points $D$ and $E$. Prove that the common external tangents to circles $MDP$ and $MPE$ meet on the midline of triangle $ABC$.
2005 Taiwan National Olympiad, 3
Let the major axis of an ellipse be $AB$, let $O$ be its center, and let $F$ be one of its foci. $P$ is a point on the ellipse, and $CD$ a chord through $O$, such that $CD$ is parallel to the tangent of the ellipse at $P$. $PF$ and $CD$ intersect at $Q$. Compare the lengths of $PQ$ and $OA$.
2022 Novosibirsk Oral Olympiad in Geometry, 3
In a regular hexagon, segments with lengths from $1$ to $6$ were drawn as shown in the right figure (the segments go sequentially in increasing length, all the angles between them are right). Find the side length of this hexagon.
[img]https://cdn.artofproblemsolving.com/attachments/3/1/82e4225b56d984e897a43ba1f403d89e5f4736.png[/img]
Kyiv City MO Juniors Round2 2010+ geometry, 2015.7.41
The equal segments $AB$ and $CD$ intersect at the point $O$ and divide it by the relation $AO: OB = CO: OD = 1: 2 $. The lines $AD$ and $BC$ intersect at the point $M$. Prove that $DM = MB$.