Found problems: 25757
2000 Harvard-MIT Mathematics Tournament, 2
In a triangle the sum of squares of the sides is $96$. What is the maximum possible value of the sum of the medians?
2000 Greece JBMO TST, 4
Let $a,b,c$ be sidelengths with $a\ge b\ge c$ and $s\ge a+1$ where $s$ be the semiperimeter of the triangle. Prove that $$ \frac{s-c}{\sqrt{a}}+\frac{s-b}{\sqrt{c}}+\frac{s-a}{\sqrt{b}}\ge \frac{s-b}{\sqrt{a}}+\frac{s-c}{\sqrt{b}}+\frac{s-a}{\sqrt{c}}$$
2003 BAMO, 3
A lattice point is a point $(x, y)$ with both $x$ and $y$ integers. Find, with proof, the smallest $n$ such that every set of $n$ lattice points contains three points that are the vertices of a triangle with integer area. (The triangle may be degenerate, in other words, the three points may lie on a straight line and hence form a triangle with area zero.)
2016 ISI Entrance Examination, 5
Prove that there exists a right angle triangle with rational sides and area $d$ if and only if $x^2,y^2$ and $z^2$ are squares of rational numbers and are in Arithmetic Progression
Here $d$ is an integer.
2012 Balkan MO Shortlist, A4
Let $ABCD$ be a square of the plane $P$. Define the minimum and the maximum the value of the function $f: P \to R$ is given by $f (P) =\frac{PA + PB}{PC + PD}$
Ukrainian TYM Qualifying - geometry, 2019.17
$n$ points are marked on the board points that are vertices of the regular $n$ -gon. One of the points is a chip. Two players take turns moving it to the other marked point and at the same time draw a segment that connects them. If two points already connected by a segment, such a move is prohibited. A player who can't make a move, lose. Which of the players can guarantee victory?
Kyiv City MO 1984-93 - geometry, 1990.9.4
Let $\alpha, \beta, \gamma$ be the angles of some triangle. Prove that there is a triangle whose sides are equal to $\sin \alpha$, $\sin \beta$, $\sin \gamma$.
2012 Math Hour Olympiad, 5-7
[u]Round 1[/u]
[b]p1.[/b] Tom and Jerry stole a chain of $7$ sausages and are now trying to divide the bounty. They take turns biting the sausages at one of the connections. When one of them breaks a connection, he may eat any single sausages that may fall out. Tom takes the first bite. Each of them is trying his best to eat more sausages than his opponent. Who will succeed?
[b]p2. [/b]The King of the Mountain Dwarves wants to light his underground throne room by placing several torches so that the whole room is lit. The king, being very miserly, wants to use as few torches as possible. What is the least number of torches he could use? (You should show why he can't do it with a smaller number of torches.)
This is the shape of the throne room:
[img]https://cdn.artofproblemsolving.com/attachments/b/2/719daafd91fc9a11b8e147bb24cb66b7a684e9.png[/img]
Also, the walls in all rooms are lined with velvet and do not reflect the light. For example, the picture on the right shows how another room in the castle is partially lit.
[img]https://cdn.artofproblemsolving.com/attachments/5/1/0f6971274e8c2ff3f2d0fa484b567ff3d631fb.png[/img]
[b]p3.[/b] In the Hundred Acre Wood, all the animals are either knights or liars. Knights always tell the truth and liars always lie. One day in the Wood, Winnie-the-Pooh, a knight, decides to visit his friend Rabbit, also a noble knight. Upon arrival, Pooh finds his friend sitting at a round table with $5$ other guests.
One-by-one, Pooh asks each person at the table how many of his two neighbors are knights. Surprisingly, he gets the same answer from everybody! "Oh bother!" proclaims Pooh. "I still don't have enough information to figure out how many knights are at this table."
"But it's my birthday," adds one of the guests. "Yes, it's his birthday!" agrees his neighbor.
Now Pooh can tell how many knights are at the table. Can you?
[b]p4.[/b] Several girls participate in a tennis tournament in which each player plays each other player exactly once. At the end of the tournament, it turns out that each player has lost at least one of her games. Prove that it is possible to find three players $A$, $B$, and $C$ such that $A$ defeated $B$, $B$ defeated $C$, and $C$ defeated $A$.
[b]p5.[/b] There are $40$ piles of stones with an equal number of stones in each. Two players, Ann and Bob, can select any two piles of stones and combine them into one bigger pile, as long as this pile would not contain more than half of all the stones on the table. A player who can’t make a move loses. Ann goes first. Who wins?
[u]Round 2[/u]
[b]p6.[/b] In a galaxy far, far away, there is a United Galactic Senate with $100$ Senators. Each Senator has no more than three enemies. Tired of their arguments, the Senators want to split into two parties so that each Senator has no more than one enemy in his own party. Prove that they can do this. (Note: If $A$ is an enemy of $B$, then $B$ is an enemy of $A$.)
[b]p7.[/b] Harry has a $2012$ by $2012$ chessboard and checkers numbered from $1$ to $2012 \times 2012$. Can he place all the checkers on the chessboard in such a way that whatever row and column Professor Snape picks, Harry will be able to choose three checkers from this row and this column such that the product of the numbers on two of the checkers will be equal to the number on the third?
[img]https://cdn.artofproblemsolving.com/attachments/b/3/a87d559b340ceefee485f41c8fe44ae9a59113.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 Harvard-MIT Mathematics Tournament, 10
Let $C$ denote the set of points $(x, y) \in R^2$ such that $x^2 + y^2 \le1$. A sequence $A_i = (x_i, y_i), |i \ge¸ 0$ of points in $R^2$ is ‘centric’ if it satisfies the following properties:
$\bullet$ $A_0 = (x_0, y_0) = (0, 0)$, $A_1 = (x_1, y_1) = (1, 0)$.
$\bullet$ For all $n\ge 0$, the circumcenter of triangle $A_nA_{n+1}A_{n+2}$ lies in $C$.
Let $K$ be the maximum value of $x^2_{2012} + y^2_{2012}$ over all centric sequences. Find all points $(x, y)$ such that $x^2 + y^2 = K$ and there exists a centric sequence such that $A_{2012} = (x, y)$.
2017 Yasinsky Geometry Olympiad, 3
The two sides of the triangle are $10$ and $15$. Prove that the length of the bisector of the angle between them is less than $12$.
1953 AMC 12/AHSME, 48
If the larger base of an isosceles trapezoid equals a diagonal and the smaller base equals the altitude, then the ratio of the smaller base to the larger base is:
$ \textbf{(A)}\ \frac{1}{2} \qquad\textbf{(B)}\ \frac{2}{3} \qquad\textbf{(C)}\ \frac{3}{4} \qquad\textbf{(D)}\ \frac{3}{5} \qquad\textbf{(E)}\ \frac{2}{5}$
1959 Poland - Second Round, 6
From a point $ M $ on the surface of a sphere, three mutually perpendicular chords $ MA $, $ MB $, $ MC $ are drawn. Prove that the segment joining the point $ M $ with the center of the sphere intersects the plane of the triangle $ ABC $ at the center of gravity of this triangle.
2002 Kazakhstan National Olympiad, 5
On the plane is given the acute triangle $ ABC $. Let $ A_1 $ and $ B_1 $ be the feet of the altitudes of $ A $ and $ B $ drawn from those vertices, respectively. Tangents at points $ A_1 $ and $ B_1 $ drawn to the circumscribed circle of the triangle $ CA_1B_1 $ intersect at $ M $. Prove that the circles circumscribed around the triangles $ AMB_1 $, $ BMA_1 $ and $ CA_1B_1 $ have a common point.
2013 Waseda University Entrance Examination, 4
Given a solid $R$ contained in a semi cylinder with the hight $1$ which has a semicircle with radius $1$ as the base. The cross section at the hight $x\ (0\leq x\leq 1)$ is the form combined with two right-angled triangles as attached figure as below. Answer the following questions.
(1) Find the cross-sectional area $S(x)$ at the hight $x$.
(2) Find the volume of $R$. If necessary, when you integrate, set $x=\sin t.$
2007 Mid-Michigan MO, 10-12
[b]p1.[/b] $17$ rooks are placed on an $8\times 8$ chess board. Prove that there must be at least one rook that is attacking at least $2$ other rooks.
[b]p2.[/b] In New Scotland there are three kinds of coins: $1$ cent, $6$ cent, and $36$ cent coins. Josh has $99$ of the $36$-cent coins (and no other coins). He is allowed to exchange a $36$ cent coin for $6$ coins of $6$ cents, and to exchange a $6$ cent coin for $6$ coins of $1$ cent. Is it possible that after several exchanges Josh will have $500$ coins?
[b]p3.[/b] Find all solutions $a, b, c, d, e, f, g, h, i$ if these letters represent distinct digits and the following multiplication is correct:
$\begin{tabular}{ccccc}
& & a & b & c \\
x & & & d & e \\
\hline
& f & a & c & c \\
+ & g & h & i & \\
\hline
f & f & f & c & c \\
\end{tabular}$
[b]p4.[/b] Pinocchio rode a bicycle for $3.5$ hours. During every $1$-hour period he went exactly $5$ km. Is it true that his average speed for the trip was $5$ km/h? Explain your reasoning.
[b]p5.[/b] Let $a, b, c$ be odd integers. Prove that the equation $ax^2 + bx + c = 0$ cannot have a rational solution.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2020 Iran Team Selection Test, 4
Let $ABC$ be an isosceles triangle ($AB=AC$) with incenter $I$. Circle $\omega$ passes through $C$ and $I$ and is tangent to $AI$. $\omega$ intersects $AC$ and circumcircle of $ABC$ at $Q$ and $D$, respectively. Let $M$ be the midpoint of $AB$ and $N$ be the midpoint of $CQ$. Prove that $AD$, $MN$ and $BC$ are concurrent.
[i]Proposed by Alireza Dadgarnia[/i]
1976 IMO Longlists, 45
We are given $n (n \ge 5)$ circles in a plane. Suppose that every three of them have a common point. Prove that all $n$ circles have a common point.
2019 Junior Balkan Team Selection Tests - Moldova, 7
Point $H$ is the orthocenter of the acute triangle $\Delta ABC$ and point $K$,situated on the line $(BC)$, is the foot of the perpendicular from point $A$ .The circle $\Omega$ passes through points $A$ and $K$ ,intersecting the sides $(AB)$ and $(AC)$ in points $M$ and $N$ .The line that passes through point $A$ and is parallel with $BC$ intersects again the circumcircles of triangles $\Delta AHM$ and $\Delta AHN$ in points $X$ and $Y$.Prove that $XY =BC$.
1999 Mongolian Mathematical Olympiad, Problem 1
The plane is divided into unit cells, and each of the cells is painted in one of two given colors. Find the minimum possible number of cells in a figure consisting of entire cells which contains each of the $16$ possible colored $2\times2$ squares.
VI Soros Olympiad 1999 - 2000 (Russia), 9.7
In the acute-angled triangle $ABC$, the points $P$, $N$, $ M$ are the feet of the altitudes drawn from the vertices $C$, $A$, $B$, respectively. The lengths of the projections of the sides $AB$, $BC$, $CA$ on straight lines $MN$, $PM$, $NP$ respectively, are equal to each other. Prove that triangle $ABC$ is regular.
2011 Saudi Arabia IMO TST, 2
Let $ABC$ be a triangle with $AB\ne AC$. Its incircle has center $I$ and touches the side $BC$ at point $D$. Line $AI$ intersects the circumcircle $\omega$ of triangle $ABC$ at $M$ and $DM$ intersects again $\omega$ at $P$. Prove that $\angle API= 90^o$.
1990 IMO Longlists, 82
In a triangle, a symmedian is a line through a vertex that is symmetric to the median with the respect to the internal bisector (all relative to the same vertex). In the triangle $ABC$, the median $m_a$ meets $BC$ at $A'$ and the circumcircle again at $A_1$. The symmedian $s_a$ meets $BC$ at $M$ and the circumcircle again at $A_2$. Given that the line $A_1A_2$ contains the circumcenter $O$ of the triangle, prove that:
[i](a) [/i]$\frac{AA'}{AM} = \frac{b^2+c^2}{2bc} ;$
[i](b) [/i]$1+4b^2c^2 = a^2(b^2+c^2)$
1983 IMO Longlists, 69
Let $A$ be one of the two distinct points of intersection of two unequal coplanar circles $C_1$ and $C_2$ with centers $O_1$ and $O_2$ respectively. One of the common tangents to the circles touches $C_1$ at $P_1$ and $C_2$ at $P_2$, while the other touches $C_1$ at $Q_1$ and $C_2$ at $Q_2$. Let $M_1$ be the midpoint of $P_1Q_1$ and $M_2$ the midpoint of $P_2Q_2$. Prove that $\angle O_1AO_2=\angle M_1AM_2$.
1995 Iran MO (2nd round), 1
Prove that for every positive integer $n \geq 3$ there exist two sets $A =\{ x_1, x_2,\ldots, x_n\}$ and $B =\{ y_1, y_2,\ldots, y_n\}$ for which
[b]i)[/b] $A \cap B = \varnothing.$
[b]ii)[/b] $x_1+ x_2+\cdots+ x_n= y_1+ y_2+\cdots+ y_n.$
[b]ii)[/b] $x_1^2+ x_2^2+\cdots+ x_n^2= y_1^2+ y_2^2+\cdots+ y_n^2.$
1957 Moscow Mathematical Olympiad, 356
A planar polygon $A_1A_2A_3 . . .A_{n-1}A_n$ ($n > 4$) is made of rigid rods that are connected by hinges. Is it possible to bend the polygon (at hinges only!) into a triangle?