This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 393

2007 China Team Selection Test, 1

Let $ ABC$ be a triangle. Circle $ \omega$­ passes through points $ B$ and $ C.$ Circle $ \omega_{1}$ is tangent internally to $ \omega$­ and also to sides $ AB$ and $ AC$ at $ T,\, P,$ and $ Q,$ respectively. Let $ M$ be midpoint of arc $ BC\, ($containing $ T)$ of ­$ \omega.$ Prove that lines $ PQ,\,BC,$ and $ MT$ are concurrent.

2006 Estonia National Olympiad, 4

In a triangle ABC with circumcentre O and centroid M, lines OM and AM are perpendicular. Let AM intersect the circumcircle of ABC again at A′. Let lines BA′ and AC intersect at D and let lines CA′ and AB intersect at E. Prove that the circumcentre of triangle ADE lies on the circumcircle of ABC.

MathLinks Contest 7th, 2.3

Let $ ABC$ be a given triangle with the incenter $ I$, and denote by $ X$, $ Y$, $ Z$ the intersections of the lines $ AI$, $ BI$, $ CI$ with the sides $ BC$, $ CA$, and $ AB$, respectively. Consider $ \mathcal{K}_{a}$ the circle tangent simultanously to the sidelines $ AB$, $ AC$, and internally to the circumcircle $ \mathcal{C}(O)$ of $ ABC$, and let $ A^{\prime}$ be the tangency point of $ \mathcal{K}_{a}$ with $ \mathcal{C}$. Similarly, define $ B^{\prime}$, and $ C^{\prime}$. Prove that the circumcircles of triangles $ AXA^{\prime}$, $ BYB^{\prime}$, and $ CZC^{\prime}$ all pass through two distinct points.

2011 Bosnia Herzegovina Team Selection Test, 3

In quadrilateral $ABCD$ sides $AD$ and $BC$ aren't parallel. Diagonals $AC$ and $BD$ intersect in $E$. $F$ and $G$ are points on sides $AB$ and $DC$ such $\frac{AF}{FB}=\frac{DG}{GC}=\frac{AD}{BC}$ Prove that if $E, F, G$ are collinear then $ABCD$ is cyclic.

2012 All-Russian Olympiad, 4

The point $E$ is the midpoint of the segment connecting the orthocentre of the scalene triangle $ABC$ and the point $A$. The incircle of triangle $ABC$ incircle is tangent to $AB$ and $AC$ at points $C'$ and $B'$ respectively. Prove that point $F$, the point symmetric to point $E$ with respect to line $B'C'$, lies on the line that passes through both the circumcentre and the incentre of triangle $ABC$.

2010 ELMO Shortlist, 1

Let $ABC$ be a triangle. Let $A_1$, $A_2$ be points on $AB$ and $AC$ respectively such that $A_1A_2 \parallel BC$ and the circumcircle of $\triangle AA_1A_2$ is tangent to $BC$ at $A_3$. Define $B_3$, $C_3$ similarly. Prove that $AA_3$, $BB_3$, and $CC_3$ are concurrent. [i]Carl Lian.[/i]

2008 Stars Of Mathematics, 3

Consider a convex quadrilateral, and the incircles of the triangles determined by one of its diagonals. Prove that the tangency points of the incircles with the diagonal are symmetrical with respect to the midpoint of the diagonal if and only if the line of the incenters passes through the crossing point of the diagonals. [i]Dan Schwarz[/i]

1997 Balkan MO, 3

The circles $\mathcal C_1$ and $\mathcal C_2$ touch each other externally at $D$, and touch a circle $\omega$ internally at $B$ and $C$, respectively. Let $A$ be an intersection point of $\omega$ and the common tangent to $\mathcal C_1$ and $\mathcal C_2$ at $D$. Lines $AB$ and $AC$ meet $\mathcal C_1$ and $\mathcal C_2$ again at $K$ and $L$, respectively, and the line $BC$ meets $\mathcal C_1$ again at $M$ and $\mathcal C_2$ again at $N$. Prove that the lines $AD$, $KM$, $LN$ are concurrent. [i]Greece[/i]

MathLinks Contest 7th, 5.2

Let $ A^{\prime}$ be an arbitrary point on the side $ BC$ of a triangle $ ABC$. Denote by $ \mathcal{T}_{A}^{b}$, $ \mathcal{T}_{A}^{c}$ the circles simultanously tangent to $ AA^{\prime}$, $ A^{\prime}B$, $ \Gamma$ and $ AA^{\prime}$, $ A^{\prime}C$, $ \Gamma$, respectively, where $ \Gamma$ is the circumcircle of $ ABC$. Prove that $ \mathcal{T}_{A}^{b}$, $ \mathcal{T}_{A}^{c}$ are congruent if and only if $ AA^{\prime}$ passes through the Nagel point of triangle $ ABC$. ([i]If $ M,N,P$ are the points of tangency of the excircles of the triangle $ ABC$ with the sides of the triangle $ BC$, $ CA$ and $ AB$ respectively, then the Nagel point of the triangle is the intersection point of the lines $ AM$, $ BN$ and $ CP$[/i].)

2014 Turkey Team Selection Test, 2

A circle $\omega$ cuts the sides $BC,CA,AB$ of the triangle $ABC$ at $A_1$ and $A_2$; $B_1$ and $B_2$; $C_1$ and $C_2$, respectively. Let $P$ be the center of $\omega$. $A'$ is the circumcenter of the triangle $A_1A_2P$, $B'$ is the circumcenter of the triangle $B_1B_2P$, $C'$ is the circumcenter of the triangle $C_1C_2P$. Prove that $AA', BB'$ and $CC'$ concur.

2007 Iran Team Selection Test, 3

Let $\omega$ be incircle of $ABC$. $P$ and $Q$ are on $AB$ and $AC$, such that $PQ$ is parallel to $BC$ and is tangent to $\omega$. $AB,AC$ touch $\omega$ at $F,E$. Prove that if $M$ is midpoint of $PQ$, and $T$ is intersection point of $EF$ and $BC$, then $TM$ is tangent to $\omega$. [i]By Ali Khezeli[/i]

2014 Sharygin Geometry Olympiad, 19

Two circles $\omega_1$ and $\omega_2$ touch externally at point $P$.Let $A$ be a point on $\omega_2$ not lying on the line through the centres of the two circles.Let $AB$ and $AC$ be the tangents to $\omega_1$.Lines $BP$ and $CP$ meet $\omega_2$ for the second time at points $E$ and $F$.Prove that the line $EF$,the tangent to $\omega_2$ at $A$ and the common tangent at $P$ concur.

2008 Costa Rica - Final Round, 6

Let $ O$ be the circumcircle of a $ \Delta ABC$ and let $ I$ be its incenter, for a point $ P$ of the plane let $ f(P)$ be the point obtained by reflecting $ P'$ by the midpoint of $ OI$, with $ P'$ the homothety of $ P$ with center $ O$ and ratio $ \frac{R}{r}$ with $ r$ the inradii and $ R$ the circumradii,(understand it by $ \frac{OP}{OP'}\equal{}\frac{R}{r}$). Let $ A_1$, $ B_1$ and $ C_1$ the midpoints of $ BC$, $ AC$ and $ AB$, respectively. Show that the rays $ A_1f(A)$, $ B_1f(B)$ and $ C_1f(C)$ concur on the incircle.

2008 Germany Team Selection Test, 2

The diagonals of a trapezoid $ ABCD$ intersect at point $ P$. Point $ Q$ lies between the parallel lines $ BC$ and $ AD$ such that $ \angle AQD \equal{} \angle CQB$, and line $ CD$ separates points $ P$ and $ Q$. Prove that $ \angle BQP \equal{} \angle DAQ$. [i]Author: Vyacheslav Yasinskiy, Ukraine[/i]

2011 Croatia Team Selection Test, 3

Triangle $ABC$ is given with its centroid $G$ and cicumcentre $O$ is such that $GO$ is perpendicular to $AG$. Let $A'$ be the second intersection of $AG$ with circumcircle of triangle $ABC$. Let $D$ be the intersection of lines $CA'$ and $AB$ and $E$ the intersection of lines $BA'$ and $AC$. Prove that the circumcentre of triangle $ADE$ is on the circumcircle of triangle $ABC$.

Kvant 2023, M2777

A convex polygon $\mathcal{P}$ with a center of symmetry $O{}$ is drawn in the plane. Prove that it is possible to place a rhombus in $\mathcal{P}$ whose image following a homothety of factor two centered at $O$ contains $\mathcal{P}$. [i]Proposed by I. Bogdanov, S. Gerdzhikov and N. Nikolov[/i]

2007 AIME Problems, 15

Four circles $\omega,$ $\omega_{A},$ $\omega_{B},$ and $\omega_{C}$ with the same radius are drawn in the interior of triangle $ABC$ such that $\omega_{A}$ is tangent to sides $AB$ and $AC$, $\omega_{B}$ to $BC$ and $BA$, $\omega_{C}$ to $CA$ and $CB$, and $\omega$ is externally tangent to $\omega_{A},$ $\omega_{B},$ and $\omega_{C}$. If the sides of triangle $ABC$ are $13,$ $14,$ and $15,$ the radius of $\omega$ can be represented in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2009 Belarus Team Selection Test, 2

Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic. [i]Proposed by John Cuya, Peru[/i]

1996 Bundeswettbewerb Mathematik, 3

Let $ABC$ be a triangle, and erect three rectangles $ABB_1A_2$, $BCC_1B_2$, $CAA_1C_2$ externally on its sides $AB$, $BC$, $CA$, respectively. Prove that the perpendicular bisectors of the segments $A_1A_2$, $B_1B_2$, $C_1C_2$ are concurrent.

2007 India IMO Training Camp, 1

Circles $ w_{1}$ and $ w_{2}$ with centres $ O_{1}$ and $ O_{2}$ are externally tangent at point $ D$ and internally tangent to a circle $ w$ at points $ E$ and $ F$ respectively. Line $ t$ is the common tangent of $ w_{1}$ and $ w_{2}$ at $ D$. Let $ AB$ be the diameter of $ w$ perpendicular to $ t$, so that $ A, E, O_{1}$ are on the same side of $ t$. Prove that lines $ AO_{1}$, $ BO_{2}$, $ EF$ and $ t$ are concurrent.

2009 Greece National Olympiad, 2

Consider a triangle $ABC$ with circumcenter $O$ and let $A_1,B_1,C_1$ be the midpoints of the sides $BC,AC,AB,$ respectively. Points $A_2,B_2,C_2$ are defined as $\overrightarrow{OA_2}=\lambda \cdot \overrightarrow{OA_1}, \ \overrightarrow{OB_2}=\lambda \cdot \overrightarrow{OB_1}, \ \overrightarrow{OC_2}=\lambda \cdot \overrightarrow{OC_1},$ where $\lambda >0.$ Prove that lines $AA_2,BB_2,CC_2$ are concurrent.

2003 Vietnam National Olympiad, 2

The circles $ C_{1}$ and $ C_{2}$ touch externally at $ M$ and the radius of $ C_{2}$ is larger than that of $ C_{1}$. $ A$ is any point on $ C_{2}$ which does not lie on the line joining the centers of the circles. $ B$ and $ C$ are points on $ C_{1}$ such that $ AB$ and $ AC$ are tangent to $ C_{1}$. The lines $ BM$, $ CM$ intersect $ C_{2}$ again at $ E$, $ F$ respectively. $ D$ is the intersection of the tangent at $ A$ and the line $ EF$. Show that the locus of $ D$ as $ A$ varies is a straight line.

2005 China Team Selection Test, 1

Triangle $ABC$ is inscribed in circle $\omega$. Circle $\gamma$ is tangent to $AB$ and $AC$ at points $P$ and $Q$ respectively. Also circle $\gamma$ is tangent to circle $\omega$ at point $S$. Let the intesection of $AS$ and $PQ$ be $T$. Prove that $\angle{BTP}=\angle{CTQ}$.

2002 Iran MO (3rd Round), 24

$A,B,C$ are on circle $\mathcal C$. $I$ is incenter of $ABC$ , $D$ is midpoint of arc $BAC$. $W$ is a circle that is tangent to $AB$ and $AC$ and tangent to $\mathcal C$ at $P$. ($W$ is in $\mathcal C$) Prove that $P$ and $I$ and $D$ are on a line.

2009 Serbia Team Selection Test, 3

Let $ k$ be the inscribed circle of non-isosceles triangle $ \triangle ABC$, which center is $ S$. Circle $ k$ touches sides $ BC,CA,AB$ in points $ P,Q,R$ respectively. Line $ QR$ intersects $ BC$ in point $ M$. Let a circle which contains points $ B$ and $ C$ touch $ k$ in point $ N$. Circumscribed circle of $ \triangle MNP$ intersects line $ AP$ in point $ L$, different from $ P$. Prove that points $ S,L$ and $ M$ are collinear.