This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1389

2016 Sharygin Geometry Olympiad, P10

Point $X$ moves along side $AB$ of triangle $ABC$, and point $Y$ moves along its circumcircle in such a way that line $XY$ passes through the midpoint of arc $AB$. Find the locus of the circumcenters of triangles $IXY$ , where I is the incenter of $ ABC$.

2004 Bulgaria National Olympiad, 1

Let $ I$ be the incenter of triangle $ ABC$, and let $ A_1$, $ B_1$, $ C_1$ be arbitrary points on the segments $ (AI)$, $ (BI)$, $ (CI)$, respectively. The perpendicular bisectors of $ AA_1$, $ BB_1$, $ CC_1$ intersect each other at $ A_2$, $ B_2$, and $ C_2$. Prove that the circumcenter of the triangle $ A_2B_2C_2$ coincides with the circumcenter of the triangle $ ABC$ if and only if $ I$ is the orthocenter of triangle $ A_1B_1C_1$.

1990 IberoAmerican, 2

Let $ABC$ be a triangle. $I$ is the incenter, and the incircle is tangent to $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. $P$ is the second point of intersection of $AD$ and the incircle. If $M$ is the midpoint of $EF$, show that $P$, $I$, $M$, $D$ are concyclic.

Ukrainian TYM Qualifying - geometry, XI.15

Let $I$ be the point of intersection of the angle bisectors of the $\vartriangle ABC$, $W_1,W_2,W_3$ be point of intersection of lines $AI, BI, CI$ with the circle circumscribed around the triangle, $r$ and $R$ be the radii of inscribed and circumscribed circles respectively. Prove the inequality $$IW_1+ IW_2 + IW_3\ge 2R + \sqrt{2Rr.}$$

2014 India Regional Mathematical Olympiad, 6

Let $D,E,F$ be the points of contact of the incircle of an acute-angled triangle $ABC$ with $BC,CA,AB$ respectively. Let $I_1,I_2,I_3$ be the incentres of the triangles $AFE, BDF, CED$, respectively. Prove that the lines $I_1D, I_2E, I_3F$ are concurrent.

2019 Romania Team Selection Test, 2

Let $ABC$ be an acute triangle with $AB<BC$. Let $I$ be the incenter of $ABC$, and let $\omega$ be the circumcircle of $ABC$. The incircle of $ABC$ is tangent to the side $BC$ at $K$. The line $AK$ meets $\omega$ again at $T$. Let $M$ be the midpoint of the side $BC$, and let $N$ be the midpoint of the arc $BAC$ of $\omega$. The segment $NT$ intersects the circumcircle of $BIC$ at $P$. Prove that $PM\parallel AK$.

2013 Iran Team Selection Test, 12

Let $ABCD$ be a cyclic quadrilateral that inscribed in the circle $\omega$.Let $I_{1},I_{2}$ and $r_{1},r_{2}$ be incenters and radii of incircles of triangles $ACD$ and $ABC$,respectively.assume that $r_{1}=r_{2}$. let $\omega'$ be a circle that touches $AB,AD$ and touches $\omega$ at $T$. tangents from $A,T$ to $\omega$ meet at the point $K$.prove that $I_{1},I_{2},K$ lie on a line.

2022 Iran-Taiwan Friendly Math Competition, 3

Let $ABC$ be a scalene triangle with $I$ be its incenter. The incircle touches $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. $Y$, $Z$ are the midpoints of $DF$, $DE$ respectively, and $S$, $V$ are the intersections of lines $YZ$ and $BC$, $AD$, respectively. $T$ is the second intersection of $\odot(ABC)$ and $AS$. $K$ is the foot from $I$ to $AT$. Prove that $KV$ is parallel to $DT$. [i]Proposed by ltf0501[/i]

1998 IMO Shortlist, 3

Let $I$ be the incenter of triangle $ABC$. Let $K,L$ and $M$ be the points of tangency of the incircle of $ABC$ with $AB,BC$ and $CA$, respectively. The line $t$ passes through $B$ and is parallel to $KL$. The lines $MK$ and $ML$ intersect $t$ at the points $R$ and $S$. Prove that $\angle RIS$ is acute.

2025 Korea - Final Round, P4

Tags: incenter , geometry
Triangle $ABC$ satisfies $\overline{CA} > \overline{AB}$. Let the incenter of triangle $ABC$ be $\omega$, which touches $BC, CA, AB$ at $D, E, F$, respectively. Let $M$ be the midpoint of $BC$. Let the circle centered at $M$ passing through $D$ intersect $DE, DF$ at $P(\neq D), Q(\neq D)$, respecively. Let line $AP$ meet $BC$ at $N$, line $BP$ meet $CA$ at $L$. Prove that the three lines $EQ, FP, NL$ are concurrent.

2019 Saudi Arabia Pre-TST + Training Tests, 3.1

Let $ABC$ be a triangle inscribed in a circle ($\omega$) and $I$ is the incenter. Denote $D,E$ as the intersection of $AI,BI$ with ($\omega$). And $DE$ cuts $AC,BC$ at $F,G$ respectively. Let $P$ be a point such that $PF \parallel AD$ and $PG \parallel BE$. Suppose that the tangent lines of ($\omega$) at $A,B$ meet at $K$. Prove that three lines $AE,BD,KP$ are concurrent or parallel.

V Soros Olympiad 1998 - 99 (Russia), 9.7

Tags: geometry , incenter
Consider the cyclic quadrilateral $ABCD$. Let $M$ be the point of intersection of its diagonals, and $L$ be the midpoint of the arc $AD$ (not containing other vertices of the quadrilateral). Prove that the distances from $L$ to the centers of the circles inscribed in triangles $ABM$ and $CDM$ are equal.

2008 Iran Team Selection Test, 12

In the acute-angled triangle $ ABC$, $ D$ is the intersection of the altitude passing through $ A$ with $ BC$ and $ I_a$ is the excenter of the triangle with respect to $ A$. $ K$ is a point on the extension of $ AB$ from $ B$, for which $ \angle AKI_a\equal{}90^\circ\plus{}\frac 34\angle C$. $ I_aK$ intersects the extension of $ AD$ at $ L$. Prove that $ DI_a$ bisects the angle $ \angle AI_aB$ iff $ AL\equal{}2R$. ($ R$ is the circumradius of $ ABC$)

2011 Turkey Team Selection Test, 1

Let $D$ be a point different from the vertices on the side $BC$ of a triangle $ABC.$ Let $I, \: I_1$ and $I_2$ be the incenters of the triangles $ABC, \: ABD$ and $ADC,$ respectively. Let $E$ be the second intersection point of the circumcircles of the triangles $AI_1I$ and $ADI_2,$ and $F$ be the second intersection point of the circumcircles of the triangles $AII_2$ and $AI_1D.$ Prove that if $AI_1=AI_2,$ then \[ \frac{EI}{FI} \cdot \frac{ED}{FD}=\frac{{EI_1}^2}{{FI_1}^2}.\]

2011 NIMO Problems, 8

Triangle $ABC$ with $\measuredangle A = 90^\circ$ has incenter $I$. A circle passing through $A$ with center $I$ is drawn, intersecting $\overline{BC}$ at $E$ and $F$ such that $BE < BF$. If $\tfrac{BE}{EF} = \tfrac{2}{3}$, then $\tfrac{CF}{FE} = \tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$. [i]Proposed by Lewis Chen [/i]

2016 NIMO Problems, 3

Tags: incenter , geometry
Right triangle $ABC$ has hypotenuse $AB = 26$, and the inscribed circle of $ABC$ has radius $5$. The largest possible value of $BC$ can be expressed as $m + \sqrt{n}$, where $m$ and $n$ are both positive integers. Find $100m + n$. [i]Proposed by Jason Xia[/i]

KoMaL A Problems 2017/2018, A. 726

Tags: incenter , geometry
In triangle $ABC$ with incenter $I$, line $AI$ intersects the circumcircle of $ABC$ at $S\ne A$. Let the reflection of $I$ with respect to $BC$ be $J$, and suppose that line $SJ$ intersects the circumcircle of $ABC$ for the second time at point $P\ne S$. Show that $AI=PI.$ [i]József Mészáros[/i]

2002 Bundeswettbewerb Mathematik, 4

In an acute-angled triangle $ABC$, we consider the feet $H_a$ and $H_b$ of the altitudes from $A$ and $B$, and the intersections $W_a$ and $W_b$ of the angle bisectors from $A$ and $B$ with the opposite sides $BC$ and $CA$ respectively. Show that the centre of the incircle $I$ of triangle $ABC$ lies on the segment $H_aH_b$ if and only if the centre of the circumcircle $O$ of triangle $ABC$ lies on the segment $W_aW_b$.

2016 NIMO Problems, 6

Tags: geometry , incenter
Let $ABCD$ be an isosceles trapezoid with $AD\parallel BC$ and $BC>AD$ such that the distance between the incenters of $\triangle ABC$ and $\triangle DBC$ is $16$. If the perimeters of $ABCD$ and $ABC$ are $120$ and $114$ respectively, then the area of $ABCD$ can be written as $m\sqrt n,$ where $m$ and $n$ are positive integers with $n$ not divisible by the square of any prime. Find $100m+n$. [i]Proposed by David Altizio and Evan Chen[/i]

2002 South africa National Olympiad, 5

In acute-angled triangle $ABC$, a semicircle with radius $r_a$ is constructed with its base on $BC$ and tangent to the other two sides. $r_b$ and $r_c$ are defined similarly. $r$ is the radius of the incircle of $ABC$. Show that \[ \frac{2}{r} = \frac{1}{r_a} + \frac{1}{r_b} + \frac{1}{r_c}. \]

2017 Bosnia Herzegovina Team Selection Test, 1

Incircle of triangle $ ABC$ touches $ AB,AC$ at $ P,Q$. $ BI, CI$ intersect with $ PQ$ at $ K,L$. Prove that circumcircle of $ ILK$ is tangent to incircle of $ ABC$ if and only if $ AB\plus{}AC\equal{}3BC$.

2018 Saudi Arabia GMO TST, 3

Let $I, O$ be the incenter, circumcenter of triangle $ABC$ and $A_1, B_1, C_1 $be arbitrary points on the segments $AI, BI, CI$ respectively. The perpendicular bisectors of $AA_1, BB_1, CC_1$ intersect each other at $X, Y$ and $Z$. Prove that the circumcenter of triangle $XYZ$ coincides with $O$ if and only if $I$ is the orthocenter of triangle $A_1B_1C_1$

2021 Thailand TST, 3

Let $ABC$ be a triangle with $AB < AC$, incenter $I$, and $A$ excenter $I_{A}$. The incircle meets $BC$ at $D$. Define $E = AD\cap BI_{A}$, $F = AD\cap CI_{A}$. Show that the circumcircle of $\triangle AID$ and $\triangle I_{A}EF$ are tangent to each other

2007 India National Olympiad, 6

If $ x$, $ y$, $ z$ are positive real numbers, prove that \[ \left(x \plus{} y \plus{} z\right)^2 \left(yz \plus{} zx \plus{} xy\right)^2 \leq 3\left(y^2 \plus{} yz \plus{} z^2\right)\left(z^2 \plus{} zx \plus{} x^2\right)\left(x^2 \plus{} xy \plus{} y^2\right) .\]

2001 China Team Selection Test, 2

In the equilateral $\bigtriangleup ABC$, $D$ is a point on side $BC$. $O_1$ and $I_1$ are the circumcenter and incenter of $\bigtriangleup ABD$ respectively, and $O_2$ and $I_2$ are the circumcenter and incenter of $\bigtriangleup ADC$ respectively. $O_1I_1$ intersects $O_2I_2$ at $P$. Find the locus of point $P$ as $D$ moves along $BC$.