This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1978 Putnam, A5

Let $0 < x_i < \pi$ for $i=1,2,\ldots, n$ and set $$x= \frac{ x_1 +x_2 + \ldots+ x_n }{n}.$$ Prove that $$ \prod_{i=1}^{n} \frac{ \sin x_i }{x_i } \leq \left( \frac{ \sin x}{x}\right)^{n}.$$

1989 Spain Mathematical Olympiad, 6

Prove that among any seven real numbers there exist two,$ a$ and $b$, such that $\sqrt3|a-b|\le |1+ab|$. Give an example of six real numbers not having this property.

1977 IMO Longlists, 38

Tags: inequalities
Let $m_j > 0$ for $j = 1, 2,\ldots, n$ and $a_1 \leq \cdots \leq a_n < b_1 \leq \cdots \leq b_n < c_1 \leq \cdots \leq c_n$ be real numbers. Prove that \[\Biggl( \sum_{j=1}^{n} m_j(a_j+b_j+c_j) \Biggr)^2 > 3 \Biggl( \sum_{j=1}^{n} m_j \Biggr) \Biggl( \sum_{j=1}^{n} m_j(a_jb_j+b_jc_j+c_ja_j) \Biggr).\]

1995 Austrian-Polish Competition, 9

Prove that for all positive integers $n,m$ and all real numbers $x, y > 0$ the following inequality holds: \[(n - 1)(m- 1)(x^{n+m} + y^{n+m}) + (n + m - 1)(x^ny^m + x^my^n)\\ \\ \ge nm(x^{n+m-1}y + xy^{n+m-1}).\]

2016 Hanoi Open Mathematics Competitions, 9

Let $x, y,z$ satisfy the following inequalities $\begin{cases} | x + 2y - 3z| \le 6 \\ | x - 2y + 3z| \le 6 \\ | x - 2y - 3z| \le 6 \\ | x + 2y + 3z| \le 6 \end{cases}$ Determine the greatest value of $M = |x| + |y| + |z|$.

1989 Irish Math Olympiad, 1

A quadrilateral $ABCD$ is inscribed, as shown, in a square of area one unit. Prove that $$2\le |AB|^2+|BC|^2+|CD|^2+|DA|^2\le 4$$ [asy] size(6cm); draw((0,0)--(10,0)); draw((10,0)--(10,10)); draw((0,10)--(10,10)); draw((0,0)--(0,10)); dot((0,8.5)); dot((3.5,10)); dot((10,3.5)); dot((3.5,0)); label("$D$",(0,8.5),W); label("$A$",(3.5,10),NE); label("$B$",(10,3.5),E); label("$C$",(3.5,0),S); draw((0,8.5)--(3.5,10)); draw((3.5,10)--(10,3.5)); draw((10,3.5)--(3.5,0)); draw((3.5,0)--(0,8.5)); [/asy]

2009 Bosnia And Herzegovina - Regional Olympiad, 4

What is the minimal value of $\sqrt{2x+1}+\sqrt{3y+1}+\sqrt{4z+1}$, if $x$, $y$ and $z$ are nonnegative real numbers such that $x+y+z=4$

2005 Morocco TST, 3

The real numbers $a_1,a_2,...,a_{100}$ satisfy the relationship : $a_1^2+ a_2^2 + \cdots +a_{100}^2 + ( a_1+a_2 + \cdots + a_{100})^2 = 101$ Prove that $|a_k| \leq 10$ for all $k \in \{1,2,...,100\}$

2014 Contests, 3

Let $a_0=5/2$ and $a_k=a_{k-1}^2-2$ for $k\ge 1.$ Compute \[\prod_{k=0}^{\infty}\left(1-\frac1{a_k}\right)\] in closed form.

2022 Canada National Olympiad, 1

If $ab+\sqrt{ab+1}+\sqrt{a^2+b}\sqrt{a+b^2}=0$, find the value of $b\sqrt{a^2+b}+a\sqrt{b^2+a}$

2006 Junior Balkan Team Selection Tests - Romania, 3

Let $x, y, z$ be positive real numbers such that $\frac{1}{1 + x}+\frac{1}{1 + y}+\frac{1}{1 + z}= 2$. Prove that $8xyz \le 1$.

Russian TST 2021, P2

In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point $P_{i}$ is chosen in disk $D_{i}$. Let $O$ be an arbitrary point in the plane. Prove that \[O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}.\] (A disk is assumed to contain its boundary.)

2014 Bulgaria JBMO TST, 2

Tags: inequalities
Find the maximum possible value of $a + b + c ,$ if $a,b,c$ are positive real numbers such that $a^2 + b^2 + c^2 = a^3 + b^3 + c^3 .$

2011 Mathcenter Contest + Longlist, 5

Let $a,b,c\in R^+$ with $abc=1$. Prove that $$\frac{a^3b^3}{a+b}+\frac{b^3c^3}{b+c}+\frac{c^3c^3}{c+a} \ge \frac12 \left(\frac{1}{a}+ \frac{1}{b}+\frac{1}{c}\right)$$ [i](Zhuge Liang)[/i]

2022 JHMT HS, 7

Find the least positive integer $N$ such that there exist positive real numbers $a_1,a_2,\dots,a_N$ such that \[ \sum_{k=1}^{N}ka_k=1 \quad \text{and} \quad \sum_{k=1}^{N}\frac{a_k^2}{k}\leq \frac{1}{2022^2}. \]

2006 Hungary-Israel Binational, 2

If $ x$, $ y$, $ z$ are nonnegative real numbers with the sum $ 1$, find the maximum value of $ S \equal{} x^2(y \plus{} z) \plus{} y^2(z \plus{} x) \plus{} z^2(x \plus{} y)$ and $ C \equal{} x^2y \plus{} y^2z \plus{} z^2x$.

2014 Saudi Arabia Pre-TST, 3.2

Let $x, y$ be positive real numbers. Find the minimum of $$x^2 + xy +\frac{y^2}{2}+\frac{2^6}{x + y}+\frac{3^4}{x^3}$$

1988 China Team Selection Test, 1

Suppose real numbers $A,B,C$ such that for all real numbers $x,y,z$ the following inequality holds: \[A(x-y)(x-z) + B(y-z)(y-x) + C(z-x)(z-y) \geq 0.\] Find the necessary and sufficient condition $A,B,C$ must satisfy (expressed by means of an equality or an inequality).

2017 Serbia Team Selection Test, 5

Let $n \geq 2$ be a positive integer and $\{x_i\}_{i=0}^n$ a sequence such that not all of its elements are zero and there is a positive constant $C_n$ for which: (i) $x_1+ \dots +x_n=0$, and (ii) for each $i$ either $x_i\leq x_{i+1}$ or $x_i\leq x_{i+1} + C_n x_{i+2}$ (all indexes are assumed modulo $n$). Prove that a) $C_n\geq 2$, and b) $C_n=2$ if and only $2 \mid n$.

2005 Italy TST, 2

$(a)$ Prove that in a triangle the sum of the distances from the centroid to the sides is not less than three times the inradius, and find the cases of equality. $(b)$ Determine the points in a triangle that minimize the sum of the distances to the sides.

2010 India IMO Training Camp, 10

Let $ABC$ be a triangle. Let $\Omega$ be the brocard point. Prove that $\left(\frac{A\Omega}{BC}\right)^2+\left(\frac{B\Omega}{AC}\right)^2+\left(\frac{C\Omega}{AB}\right)^2\ge 1$

2017 Harvard-MIT Mathematics Tournament, 3

Tags: inequalities
Find the number of pairs of integers $(x, y)$ such that $x^2 + 2y^2 < 25$.

2014 Contests, 1

Let $x,y$ be positive real numbers .Find the minimum of $x+y+\frac{|x-1|}{y}+\frac{|y-1|}{x}$.

1982 All Soviet Union Mathematical Olympiad, 348

The $KLMN$ tetrahedron (triangle pyramid) vertices are situated inside or on the faces or on the edges of the $ABCD$ tetrahedron. Prove that perimeter of $KLMN$ is less than $4/3$ perimeter of $ABCD$.

2009 National Olympiad First Round, 13

In trapezoid $ ABCD$, $ AB \parallel CD$, $ \angle CAB < 90^\circ$, $ AB \equal{} 5$, $ CD \equal{} 3$, $ AC \equal{} 15$. What are the sum of different integer values of possible $ BD$? $\textbf{(A)}\ 101 \qquad\textbf{(B)}\ 108 \qquad\textbf{(C)}\ 115 \qquad\textbf{(D)}\ 125 \qquad\textbf{(E)}\ \text{None}$