Found problems: 6530
1978 Putnam, A5
Let $0 < x_i < \pi$ for $i=1,2,\ldots, n$ and set
$$x= \frac{ x_1 +x_2 + \ldots+ x_n }{n}.$$
Prove that
$$ \prod_{i=1}^{n} \frac{ \sin x_i }{x_i } \leq \left( \frac{ \sin x}{x}\right)^{n}.$$
1989 Spain Mathematical Olympiad, 6
Prove that among any seven real numbers there exist two,$ a$ and $b$, such that $\sqrt3|a-b|\le |1+ab|$.
Give an example of six real numbers not having this property.
1977 IMO Longlists, 38
Let $m_j > 0$ for $j = 1, 2,\ldots, n$ and $a_1 \leq \cdots \leq a_n < b_1 \leq \cdots \leq b_n < c_1 \leq \cdots \leq c_n$ be real numbers. Prove that
\[\Biggl( \sum_{j=1}^{n} m_j(a_j+b_j+c_j) \Biggr)^2 > 3 \Biggl( \sum_{j=1}^{n} m_j \Biggr) \Biggl( \sum_{j=1}^{n} m_j(a_jb_j+b_jc_j+c_ja_j) \Biggr).\]
1995 Austrian-Polish Competition, 9
Prove that for all positive integers $n,m$ and all real numbers $x, y > 0$ the following inequality holds:
\[(n - 1)(m- 1)(x^{n+m} + y^{n+m}) + (n + m - 1)(x^ny^m + x^my^n)\\ \\ \ge
nm(x^{n+m-1}y + xy^{n+m-1}).\]
2016 Hanoi Open Mathematics Competitions, 9
Let $x, y,z$ satisfy the following inequalities $\begin{cases} | x + 2y - 3z| \le 6 \\
| x - 2y + 3z| \le 6 \\
| x - 2y - 3z| \le 6 \\
| x + 2y + 3z| \le 6 \end{cases}$
Determine the greatest value of $M = |x| + |y| + |z|$.
1989 Irish Math Olympiad, 1
A quadrilateral $ABCD$ is inscribed, as shown, in a square of area one unit. Prove that $$2\le |AB|^2+|BC|^2+|CD|^2+|DA|^2\le 4$$
[asy]
size(6cm);
draw((0,0)--(10,0));
draw((10,0)--(10,10));
draw((0,10)--(10,10));
draw((0,0)--(0,10));
dot((0,8.5)); dot((3.5,10)); dot((10,3.5)); dot((3.5,0));
label("$D$",(0,8.5),W);
label("$A$",(3.5,10),NE);
label("$B$",(10,3.5),E);
label("$C$",(3.5,0),S);
draw((0,8.5)--(3.5,10));
draw((3.5,10)--(10,3.5));
draw((10,3.5)--(3.5,0));
draw((3.5,0)--(0,8.5));
[/asy]
2009 Bosnia And Herzegovina - Regional Olympiad, 4
What is the minimal value of $\sqrt{2x+1}+\sqrt{3y+1}+\sqrt{4z+1}$, if $x$, $y$ and $z$ are nonnegative real numbers such that $x+y+z=4$
2005 Morocco TST, 3
The real numbers $a_1,a_2,...,a_{100}$ satisfy the relationship :
$a_1^2+ a_2^2 + \cdots +a_{100}^2 + ( a_1+a_2 + \cdots + a_{100})^2 = 101$
Prove that $|a_k| \leq 10$ for all $k \in \{1,2,...,100\}$
2014 Contests, 3
Let $a_0=5/2$ and $a_k=a_{k-1}^2-2$ for $k\ge 1.$ Compute \[\prod_{k=0}^{\infty}\left(1-\frac1{a_k}\right)\] in closed form.
2022 Canada National Olympiad, 1
If $ab+\sqrt{ab+1}+\sqrt{a^2+b}\sqrt{a+b^2}=0$, find the value of $b\sqrt{a^2+b}+a\sqrt{b^2+a}$
2006 Junior Balkan Team Selection Tests - Romania, 3
Let $x, y, z$ be positive real numbers such that $\frac{1}{1 + x}+\frac{1}{1 + y}+\frac{1}{1 + z}= 2$.
Prove that $8xyz \le 1$.
Russian TST 2021, P2
In the plane, there are $n \geqslant 6$ pairwise disjoint disks $D_{1}, D_{2}, \ldots, D_{n}$ with radii $R_{1} \geqslant R_{2} \geqslant \ldots \geqslant R_{n}$. For every $i=1,2, \ldots, n$, a point $P_{i}$ is chosen in disk $D_{i}$. Let $O$ be an arbitrary point in the plane. Prove that \[O P_{1}+O P_{2}+\ldots+O P_{n} \geqslant R_{6}+R_{7}+\ldots+R_{n}.\]
(A disk is assumed to contain its boundary.)
2014 Bulgaria JBMO TST, 2
Find the maximum possible value of $a + b + c ,$ if $a,b,c$ are positive real numbers such that $a^2 + b^2 + c^2 = a^3 + b^3 + c^3 .$
2011 Mathcenter Contest + Longlist, 5
Let $a,b,c\in R^+$ with $abc=1$. Prove that $$\frac{a^3b^3}{a+b}+\frac{b^3c^3}{b+c}+\frac{c^3c^3}{c+a} \ge \frac12 \left(\frac{1}{a}+ \frac{1}{b}+\frac{1}{c}\right)$$
[i](Zhuge Liang)[/i]
2022 JHMT HS, 7
Find the least positive integer $N$ such that there exist positive real numbers $a_1,a_2,\dots,a_N$ such that
\[ \sum_{k=1}^{N}ka_k=1 \quad \text{and} \quad \sum_{k=1}^{N}\frac{a_k^2}{k}\leq \frac{1}{2022^2}. \]
2006 Hungary-Israel Binational, 2
If $ x$, $ y$, $ z$ are nonnegative real numbers with the sum $ 1$, find the maximum value of $ S \equal{} x^2(y \plus{} z) \plus{} y^2(z \plus{} x) \plus{} z^2(x \plus{} y)$ and $ C \equal{} x^2y \plus{} y^2z \plus{} z^2x$.
2014 Saudi Arabia Pre-TST, 3.2
Let $x, y$ be positive real numbers. Find the minimum of
$$x^2 + xy +\frac{y^2}{2}+\frac{2^6}{x + y}+\frac{3^4}{x^3}$$
1988 China Team Selection Test, 1
Suppose real numbers $A,B,C$ such that for all real numbers $x,y,z$ the following inequality holds:
\[A(x-y)(x-z) + B(y-z)(y-x) + C(z-x)(z-y) \geq 0.\]
Find the necessary and sufficient condition $A,B,C$ must satisfy (expressed by means of an equality or an inequality).
2017 Serbia Team Selection Test, 5
Let $n \geq 2$ be a positive integer and $\{x_i\}_{i=0}^n$ a sequence such that not all of its elements are zero and there is a positive constant $C_n$ for which:
(i) $x_1+ \dots +x_n=0$, and
(ii) for each $i$ either $x_i\leq x_{i+1}$ or $x_i\leq x_{i+1} + C_n x_{i+2}$ (all indexes are assumed modulo $n$).
Prove that
a) $C_n\geq 2$, and
b) $C_n=2$ if and only $2 \mid n$.
2005 Italy TST, 2
$(a)$ Prove that in a triangle the sum of the distances from the centroid to the sides is not less than three times the inradius, and find the cases of equality.
$(b)$ Determine the points in a triangle that minimize the sum of the distances to the sides.
2010 India IMO Training Camp, 10
Let $ABC$ be a triangle. Let $\Omega$ be the brocard point. Prove that $\left(\frac{A\Omega}{BC}\right)^2+\left(\frac{B\Omega}{AC}\right)^2+\left(\frac{C\Omega}{AB}\right)^2\ge 1$
2017 Harvard-MIT Mathematics Tournament, 3
Find the number of pairs of integers $(x, y)$ such that $x^2 + 2y^2 < 25$.
2014 Contests, 1
Let $x,y$ be positive real numbers .Find the minimum of $x+y+\frac{|x-1|}{y}+\frac{|y-1|}{x}$.
1982 All Soviet Union Mathematical Olympiad, 348
The $KLMN$ tetrahedron (triangle pyramid) vertices are situated inside or on the faces or on the edges of the $ABCD$ tetrahedron. Prove that perimeter of $KLMN$ is less than $4/3$ perimeter of $ABCD$.
2009 National Olympiad First Round, 13
In trapezoid $ ABCD$, $ AB \parallel CD$, $ \angle CAB < 90^\circ$, $ AB \equal{} 5$, $ CD \equal{} 3$, $ AC \equal{} 15$. What are the sum of different integer values of possible $ BD$?
$\textbf{(A)}\ 101 \qquad\textbf{(B)}\ 108 \qquad\textbf{(C)}\ 115 \qquad\textbf{(D)}\ 125 \qquad\textbf{(E)}\ \text{None}$