Found problems: 325
1952 Moscow Mathematical Olympiad, 215
$\vartriangle ABC$ is divided by a straight line $BD$ into two triangles. Prove that the sum of the radii of circles inscribed in triangles $ABD$ and $DBC$ is greater than the radius of the circle inscribed in $\vartriangle ABC$.
2003 India IMO Training Camp, 8
Let $ABC$ be a triangle, and let $r, r_1, r_2, r_3$ denoted its inradius and the exradii opposite the vertices $A,B,C$, respectively. Suppose $a>r_1, b>r_2, c>r_3$. Prove that
(a) triangle $ABC$ is acute,
(b) $a+b+c>r+r_1+r_2+r_3$.
2014 India Regional Mathematical Olympiad, 4
let $ABC$ be a right angled triangle with inradius $1$
find the minimum area of triangle $ABC$
2015 Thailand Mathematical Olympiad, 7
Let $A, B, C$ be centers of three circles that are mutually tangent externally, let $r_A, r_B, r_C$ be the radii of the circles, respectively. Let $r$ be the radius of the incircle of $\vartriangle ABC$. Prove that $$r^2 \le \frac19 (r_A^2 + r_B^2+r_C^2)$$ and identify, with justification, one case where the equality is attained.
2010 Korea - Final Round, 1
Given an arbitrary triangle $ ABC$, denote by $ P,Q,R$ the intersections of the incircle with sides $ BC, CA, AB$ respectively. Let the area of triangle $ ABC$ be $ T$, and its perimeter $ L$. Prove that the inequality
\[\left(\frac {AB}{PQ}\right)^3 \plus{}\left(\frac {BC}{QR}\right)^3 \plus{}\left(\frac {CA}{RP}\right)^3 \geq \frac {2}{\sqrt {3}} \cdot \frac {L^2}{T}\]
holds.
2014 Brazil National Olympiad, 1
Let $ABCD$ be a convex quadrilateral. Diagonals $AC$ and $BD$ meet at point $P$. The inradii of triangles $ABP$, $BCP$, $CDP$ and $DAP$ are equal. Prove that $ABCD$ is a rhombus.
2010 Stanford Mathematics Tournament, 2
Find the radius of a circle inscribed in a triangle with side lengths $4$, $5$, and $6$
2010 Lithuania National Olympiad, 2
Let $I$ be the incenter of a triangle $ABC$. $D,E,F$ are the symmetric points of $I$ with respect to $BC,AC,AB$ respectively. Knowing that $D,E,F,B$ are concyclic,find all possible values of $\angle B$.
1935 Moscow Mathematical Olympiad, 008
Prove that if the lengths of the sides of a triangle form an arithmetic progression, then the radius of the inscribed circle is one third of one of the heights of the triangle.
1993 IMO Shortlist, 3
Let triangle $ABC$ be such that its circumradius is $R = 1.$ Let $r$ be the inradius of $ABC$ and let $p$ be the inradius of the orthic triangle $A'B'C'$ of triangle $ABC.$ Prove that \[ p \leq 1 - \frac{1}{3 \cdot (1+r)^2}. \]
[hide="Similar Problem posted by Pascual2005"]
Let $ABC$ be a triangle with circumradius $R$ and inradius $r$. If $p$ is the inradius of the orthic triangle of triangle $ABC$, show that $\frac{p}{R} \leq 1 - \frac{\left(1+\frac{r}{R}\right)^2}{3}$.
[i]Note.[/i] The orthic triangle of triangle $ABC$ is defined as the triangle whose vertices are the feet of the altitudes of triangle $ABC$.
[b]SOLUTION 1 by mecrazywong:[/b]
$p=2R\cos A\cos B\cos C,1+\frac{r}{R}=1+4\sin A/2\sin B/2\sin C/2=\cos A+\cos B+\cos C$.
Thus, the ineqaulity is equivalent to $6\cos A\cos B\cos C+(\cos A+\cos B+\cos C)^2\le3$. But this is easy since $\cos A+\cos B+\cos C\le3/2,\cos A\cos B\cos C\le1/8$.
[b]SOLUTION 2 by Virgil Nicula:[/b]
I note the inradius $r'$ of a orthic triangle.
Must prove the inequality $\frac{r'}{R}\le 1-\frac 13\left( 1+\frac rR\right)^2.$
From the wellknown relations $r'=2R\cos A\cos B\cos C$
and $\cos A\cos B\cos C\le \frac 18$ results $\frac{r'}{R}\le \frac 14.$
But $\frac 14\le 1-\frac 13\left( 1+\frac rR\right)^2\Longleftrightarrow \frac 13\left( 1+\frac rR\right)^2\le \frac 34\Longleftrightarrow$
$\left(1+\frac rR\right)^2\le \left(\frac 32\right)^2\Longleftrightarrow 1+\frac rR\le \frac 32\Longleftrightarrow \frac rR\le \frac 12\Longleftrightarrow 2r\le R$ (true).
Therefore, $\frac{r'}{R}\le \frac 14\le 1-\frac 13\left( 1+\frac rR\right)^2\Longrightarrow \frac{r'}{R}\le 1-\frac 13\left( 1+\frac rR\right)^2.$
[b]SOLUTION 3 by darij grinberg:[/b]
I know this is not quite an ML reference, but the problem was discussed in Hyacinthos messages #6951, #6978, #6981, #6982, #6985, #6986 (particularly the last message).
[/hide]
2005 France Team Selection Test, 2
Two right angled triangles are given, such that the incircle of the first one is equal to the circumcircle of the second one. Let $S$ (respectively $S'$) be the area of the first triangle (respectively of the second triangle).
Prove that $\frac{S}{S'}\geq 3+2\sqrt{2}$.
2012 Centers of Excellency of Suceava, 4
Let $ O $ be the circumcenter of a triangle $ ABC $ with $ \angle BAC=60^{\circ } $ whose incenter is denoted by $ I. $ Let $ B_1,C_1 $ be the intersection of $ BI,CI $ with the circumcircle of $ ABC, $ respectively. Denote by $ O_1,O_2 $ the circumcenters of $ BIC_1,CIB_1, $ respectively. Show that $ O_1,I,O,O_2 $ are collinear.
[i]Cătălin Țigăeru[/i]
2004 Bulgaria Team Selection Test, 3
Find the maximum possible value of the inradius of a triangle whose vertices lie in the interior, or on the boundary, of a unit square.
2006 Iran MO (3rd Round), 5
Find the biggest real number $ k$ such that for each right-angled triangle with sides $ a$, $ b$, $ c$, we have
\[ a^{3}\plus{}b^{3}\plus{}c^{3}\geq k\left(a\plus{}b\plus{}c\right)^{3}.\]
2016 Czech And Slovak Olympiad III A, 2
Let us denote successively $r$ and $r_a$ the radii of the inscribed circle and the exscribed circle wrt to side BC of triangle $ABC$. Prove that if it is true that $r+r_a=|BC|$ , then the triangle $ABC$ is a right one
2011 AMC 12/AHSME, 13
Triangle $ABC$ has side-lengths $AB=12$, $BC=24$, and $AC=18$. The line through the incenter of $\triangle ABC$ parallel to $\overline{BC}$ intersects $\overline{AB}$ at $M$ and $\overline{AC}$ at $N$. What is the perimeter of $\triangle AMN$?
$ \textbf{(A)}\ 27 \qquad
\textbf{(B)}\ 30 \qquad
\textbf{(C)}\ 33 \qquad
\textbf{(D)}\ 36 \qquad
\textbf{(E)}\ 42
$
1985 Bundeswettbewerb Mathematik, 2
The insphere of any tetrahedron has radius $r$. The four tangential planes parallel to the side faces of the tetrahedron cut from the tetrahedron four smaller tetrahedrons whose in-sphere radii are $r_1, r_2, r_3$ and $r_4$. Prove that $$r_1 + r_2 + r_3 + r_4 = 2r$$
2016 Sharygin Geometry Olympiad, 3
Assume that the two triangles $ABC$ and $A'B'C'$ have the common incircle and the common circumcircle. Let a point $P$ lie inside both the triangles. Prove that the sum of the distances from $P$ to the sidelines of triangle $ABC$ is equal to the sum of distances from $P$ to the sidelines of triangle $A'B'C'$.
2000 Tuymaada Olympiad, 2
A tangent $l$ to the circle inscribed in a rhombus meets its sides $AB$ and $BC$ at points $E$ and $F$ respectively.
Prove that the product $AE\cdot CF$ is independent of the choice of $l$.
2011 N.N. Mihăileanu Individual, 4
Consider a triangle $ ABC $ having incenter $ I $ and inradius $ r. $ Let $ D $ be the tangency of $ ABC $ 's incircle with $ BC, $ and $ E $ on the line $ BC $ such that $ AE $ is perpendicular to $ BC, $ and $ M\neq E $ on the segment $ AE $ such that $ AM=r. $
[b]a)[/b] Give an idenity for $ \frac{BD}{DC} $ involving only the lengths of the sides of the triangle.
[b]b)[/b] Prove that $ AB \cdot \overrightarrow{IC} +BC\cdot \overrightarrow{IA} +CA\cdot \overrightarrow{IB} =0. $
[b]c)[/b] Show that $ MI $ passes through the middle of the side $ BC. $
[i]Cătălin Zârnă[/i]
2015 Sharygin Geometry Olympiad, P15
The sidelengths of a triangle $ABC$ are not greater than $1$. Prove that $p(1 -2Rr)$ is not greater than $1$, where $p$ is the semiperimeter, $R$ and $r$ are the circumradius and the inradius of $ABC$.
1987 ITAMO, 3
Show how to construct (by a ruler and a compass) a right-angled triangle, given its inradius and circumradius.
2013 Online Math Open Problems, 32
In $\triangle ABC$ with incenter $I$, $AB = 61$, $AC = 51$, and $BC=71$. The circumcircles of triangles $AIB$ and $AIC$ meet line $BC$ at points $D$ ($D \neq B$) and $E$ ($E \neq C$), respectively. Determine the length of segment $DE$.
[i]James Tao[/i]
V Soros Olympiad 1998 - 99 (Russia), 10.5
The radius of the circle inscribed in triangle $ABC$ is equal to $r$. This circle is tangent to $BC$ at point $M$ and divides the segment $AM$ in ratio $k$ (starting from vertex $A$). Find the sum of the radii of the circles inscribed in triangles $AMB$ and $AMC$.
2000 Tournament Of Towns, 2
In triangle $ABC, AB = AC$. A line is drawn through $A$ parallel to $BC$. Outside triangle $ABC$, a circle is drawn tangent to this line, to the line $BC$, to $AB$ and to the incircle of $ABC$. If the radius of this circle is $1$ , determine the inradius of $ABC$.
(RK Gordin)