This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 325

2006 Iran MO (3rd Round), 5

Find the biggest real number $ k$ such that for each right-angled triangle with sides $ a$, $ b$, $ c$, we have \[ a^{3}\plus{}b^{3}\plus{}c^{3}\geq k\left(a\plus{}b\plus{}c\right)^{3}.\]

2010 USAMO, 4

Let $ABC$ be a triangle with $\angle A = 90^{\circ}$. Points $D$ and $E$ lie on sides $AC$ and $AB$, respectively, such that $\angle ABD = \angle DBC$ and $\angle ACE = \angle ECB$. Segments $BD$ and $CE$ meet at $I$. Determine whether or not it is possible for segments $AB$, $AC$, $BI$, $ID$, $CI$, $IE$ to all have integer lengths.

1980 IMO, 20

The radii of the circumscribed circle and the inscribed circle of a regular $n$-gon, $n\ge 3$ are denoted by $R_n$ and $r_n$, respectively. Prove that \[\frac{r_n}{R_n}\ge\left(\frac{r_{n+1}}{R_{n+1}}\right)^2.\]

2003 Tournament Of Towns, 6

Let $O$ be the center of insphere of a tetrahedron $ABCD$. The sum of areas of faces $ABC$ and $ABD$ equals the sum of areas of faces $CDA$ and $CDB$. Prove that $O$ and midpoints of $BC, AD, AC$ and $BD$ belong to the same plane.

2021 Saudi Arabia Training Tests, 23

Let $ABC$ be triangle with the symmedian point $L$ and circumradius $R$. Construct parallelograms $ ADLE$, $BHLK$, $CILJ$ such that $D,H \in AB$, $K, I \in BC$, $J,E \in CA$ Suppose that $DE$, $HK$, $IJ$ pairwise intersect at $X, Y,Z$. Prove that inradius of $XYZ$ is $\frac{R}{2}$ .

1960 IMO, 6

Consider a cone of revolution with an inscribed sphere tangent to the base of the cone. A cylinder is circumscribed about this sphere so that one of its bases lies in the base of the cone. let $V_1$ be the volume of the cone and $V_2$ be the volume of the cylinder. a) Prove that $V_1 \neq V_2$; b) Find the smallest number $k$ for which $V_1=kV_2$; for this case, construct the angle subtended by a diamter of the base of the cone at the vertex of the cone.

2008 Hong kong National Olympiad, 3

$ \Delta ABC$ is a triangle such that $ AB \neq AC$. The incircle of $ \Delta ABC$ touches $ BC, CA, AB$ at $ D, E, F$ respectively. $ H$ is a point on the segment $ EF$ such that $ DH \bot EF$. Suppose $ AH \bot BC$, prove that $ H$ is the orthocentre of $ \Delta ABC$. Remark: the original question has missed the condition $ AB \neq AC$

2020 Saint Petersburg Mathematical Olympiad, 5.

Point $I_a$ is the $A$-excircle center of $\triangle ABC$ which is tangent to $BC$ at $X$. Let $A'$ be diametrically opposite point of $A$ with respect to the circumcircle of $\triangle ABC$. On the segments $I_aX, BA'$ and $CA'$ are chosen respectively points $Y,Z$ and $T$ such that $I_aY=BZ=CT=r$ where $r$ is the inradius of $\triangle ABC$. Prove that the points $X,Y,Z$ and $T$ are concyclic.

2006 India IMO Training Camp, 1

Let $ABC$ be a triangle with inradius $r$, circumradius $R$, and with sides $a=BC,b=CA,c=AB$. Prove that \[\frac{R}{2r} \ge \left(\frac{64a^2b^2c^2}{(4a^2-(b-c)^2)(4b^2-(c-a)^2)(4c^2-(a-b)^2)}\right)^2.\]

1997 IberoAmerican, 2

In a triangle $ABC$, it is drawn a circumference with center in the incenter $I$ and that meet twice each of the sides of the triangle: the segment $BC$ on $D$ and $P$ (where $D$ is nearer two $B$); the segment $CA$ on $E$ and $Q$ (where $E$ is nearer to $C$); and the segment $AB$ on $F$ and $R$ ( where $F$ is nearer to $A$). Let $S$ be the point of intersection of the diagonals of the quadrilateral $EQFR$. Let $T$ be the point of intersection of the diagonals of the quadrilateral $FRDP$. Let $U$ be the point of intersection of the diagonals of the quadrilateral $DPEQ$. Show that the circumcircle to the triangle $\triangle{FRT}$, $\triangle{DPU}$ and $\triangle{EQS}$ have a unique point in common.

1999 AMC 12/AHSME, 16

What is the radius of a circle inscribed in a rhombus with diagonals of length $ 10$ and $ 24$? $ \textbf{(A)}\ 4 \qquad \textbf{(B)}\ 58/13 \qquad \textbf{(C)}\ 60/13 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6$

1999 Harvard-MIT Mathematics Tournament, 5

Tags: geometry , inradius
Let $r$ be the inradius of triangle $ABC$. Take a point $D$ on side $BC$, and let $r_1$ and $r_2$ be the inradii of triangles $ABD$ and $ACD$. Prove that $r$, $r_1$, and $r_2$ can always be the side lengths of a triangle.

2010 Contests, 1

Given an arbitrary triangle $ ABC$, denote by $ P,Q,R$ the intersections of the incircle with sides $ BC, CA, AB$ respectively. Let the area of triangle $ ABC$ be $ T$, and its perimeter $ L$. Prove that the inequality \[\left(\frac {AB}{PQ}\right)^3 \plus{}\left(\frac {BC}{QR}\right)^3 \plus{}\left(\frac {CA}{RP}\right)^3 \geq \frac {2}{\sqrt {3}} \cdot \frac {L^2}{T}\] holds.

1986 Vietnam National Olympiad, 2

Let $ R$, $ r$ be respectively the circumradius and inradius of a regular $ 1986$-gonal pyramid. Prove that \[ \frac{R}{r}\ge 1\plus{}\frac{1}{\cos\frac{\pi}{1986}}\] and find the total area of the surface of the pyramid when the equality occurs.

2019 Yasinsky Geometry Olympiad, p6

In the triangle $ABC$ it is known that $BC = 5, AC - AB = 3$. Prove that $r <2$ . (here $r$ is the radius of the circle inscribed in the triangle $ABC$). (Mykola Moroz)

2014 Online Math Open Problems, 14

Let $ABC$ be a triangle with incenter $I$ and $AB = 1400$, $AC = 1800$, $BC = 2014$. The circle centered at $I$ passing through $A$ intersects line $BC$ at two points $X$ and $Y$. Compute the length $XY$. [i]Proposed by Evan Chen[/i]

PEN H Problems, 27

Prove that there exist infinitely many positive integers $n$ such that $p=nr$, where $p$ and $r$ are respectively the semi-perimeter and the inradius of a triangle with integer side lengths.

2017 Yasinsky Geometry Olympiad, 1

In the isosceles trapezoid with the area of $28$, a circle of radius $2$ is inscribed. Find the length of the side of the trapezoid.

2020-21 IOQM India, 23

The incircle $\Gamma$ of a scalene triangle $ABC$ touches $BC$ at $D, CA$ at $E$ and $AB$ at $F$. Let $r_A$ be the radius of the circle inside $ABC$ which is tangent to $\Gamma$ and the sides $AB$ and $AC$. Define $r_B$ and $r_C$ similarly. If $r_A = 16, r_B = 25$ and $r_C = 36$, determine the radius of $\Gamma$.

2014 Contests, 1

Let $ABCD$ be a convex quadrilateral. Diagonals $AC$ and $BD$ meet at point $P$. The inradii of triangles $ABP$, $BCP$, $CDP$ and $DAP$ are equal. Prove that $ABCD$ is a rhombus.

2010 Sharygin Geometry Olympiad, 1

Let $O, I$ be the circumcenter and the incenter of a right-angled triangle, $R, r$ be the radii of respective circles, $J$ be the reflection of the vertex of the right angle in $I$. Find $OJ$.

1996 Estonia Team Selection Test, 2

Let $a,b,c$ be the sides of a triangle, $\alpha ,\beta ,\gamma$ the corresponding angles and $r$ the inradius. Prove that $$a\cdot sin\alpha+b\cdot sin\beta+c\cdot sin\gamma\geq 9r$$

2007 AIME Problems, 15

Four circles $\omega,$ $\omega_{A},$ $\omega_{B},$ and $\omega_{C}$ with the same radius are drawn in the interior of triangle $ABC$ such that $\omega_{A}$ is tangent to sides $AB$ and $AC$, $\omega_{B}$ to $BC$ and $BA$, $\omega_{C}$ to $CA$ and $CB$, and $\omega$ is externally tangent to $\omega_{A},$ $\omega_{B},$ and $\omega_{C}$. If the sides of triangle $ABC$ are $13,$ $14,$ and $15,$ the radius of $\omega$ can be represented in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n.$

2010 Moldova National Olympiad, 12.4

The perimeter of a triangle is a natural number, its circumradius is equal to $\frac{65}{8}$, and the inradius is equal to $4$. Find the sides of the triangle.

1993 IMO Shortlist, 3

Let triangle $ABC$ be such that its circumradius is $R = 1.$ Let $r$ be the inradius of $ABC$ and let $p$ be the inradius of the orthic triangle $A'B'C'$ of triangle $ABC.$ Prove that \[ p \leq 1 - \frac{1}{3 \cdot (1+r)^2}. \] [hide="Similar Problem posted by Pascual2005"] Let $ABC$ be a triangle with circumradius $R$ and inradius $r$. If $p$ is the inradius of the orthic triangle of triangle $ABC$, show that $\frac{p}{R} \leq 1 - \frac{\left(1+\frac{r}{R}\right)^2}{3}$. [i]Note.[/i] The orthic triangle of triangle $ABC$ is defined as the triangle whose vertices are the feet of the altitudes of triangle $ABC$. [b]SOLUTION 1 by mecrazywong:[/b] $p=2R\cos A\cos B\cos C,1+\frac{r}{R}=1+4\sin A/2\sin B/2\sin C/2=\cos A+\cos B+\cos C$. Thus, the ineqaulity is equivalent to $6\cos A\cos B\cos C+(\cos A+\cos B+\cos C)^2\le3$. But this is easy since $\cos A+\cos B+\cos C\le3/2,\cos A\cos B\cos C\le1/8$. [b]SOLUTION 2 by Virgil Nicula:[/b] I note the inradius $r'$ of a orthic triangle. Must prove the inequality $\frac{r'}{R}\le 1-\frac 13\left( 1+\frac rR\right)^2.$ From the wellknown relations $r'=2R\cos A\cos B\cos C$ and $\cos A\cos B\cos C\le \frac 18$ results $\frac{r'}{R}\le \frac 14.$ But $\frac 14\le 1-\frac 13\left( 1+\frac rR\right)^2\Longleftrightarrow \frac 13\left( 1+\frac rR\right)^2\le \frac 34\Longleftrightarrow$ $\left(1+\frac rR\right)^2\le \left(\frac 32\right)^2\Longleftrightarrow 1+\frac rR\le \frac 32\Longleftrightarrow \frac rR\le \frac 12\Longleftrightarrow 2r\le R$ (true). Therefore, $\frac{r'}{R}\le \frac 14\le 1-\frac 13\left( 1+\frac rR\right)^2\Longrightarrow \frac{r'}{R}\le 1-\frac 13\left( 1+\frac rR\right)^2.$ [b]SOLUTION 3 by darij grinberg:[/b] I know this is not quite an ML reference, but the problem was discussed in Hyacinthos messages #6951, #6978, #6981, #6982, #6985, #6986 (particularly the last message). [/hide]