This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 87

2016 ELMO Problems, 6

Elmo is now learning olympiad geometry. In triangle $ABC$ with $AB\neq AC$, let its incircle be tangent to sides $BC$, $CA$, and $AB$ at $D$, $E$, and $F$, respectively. The internal angle bisector of $\angle BAC$ intersects lines $DE$ and $DF$ at $X$ and $Y$, respectively. Let $S$ and $T$ be distinct points on side $BC$ such that $\angle XSY=\angle XTY=90^\circ$. Finally, let $\gamma$ be the circumcircle of $\triangle AST$. (a) Help Elmo show that $\gamma$ is tangent to the circumcircle of $\triangle ABC$. (b) Help Elmo show that $\gamma$ is tangent to the incircle of $\triangle ABC$. [i]James Lin[/i]

2009 Ukraine Team Selection Test, 10

Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic. [i]Proposed by John Cuya, Peru[/i]

India EGMO 2022 TST, 5

Let $I$ and $I_A$ denote the incentre and excentre opposite to $A$ of scalene $\triangle ABC$ respectively. Let $A'$ be the antipode of $A$ in $\odot (ABC)$ and $L$ be the midpoint of arc $(BAC)$. Let $LB$ and $LC$ intersect $AI$ at points $Y$ and $Z$ respectively. Prove that $\odot (LYZ)$ is tangent to $\odot (A'II_A)$. [i]~Mahavir Gandhi[/i]

2010 Contests, 2

Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$, $\Gamma_4$ be distinct circles such that $\Gamma_1$, $\Gamma_3$ are externally tangent at $P$, and $\Gamma_2$, $\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A$, $B$, $C$, $D$, respectively, and that all these points are different from $P$. Prove that \[ \frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}. \]

2017 Germany Team Selection Test, 3

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2010 Indonesia TST, 2

Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$, $\Gamma_4$ be distinct circles such that $\Gamma_1$, $\Gamma_3$ are externally tangent at $P$, and $\Gamma_2$, $\Gamma_4$ are externally tangent at the same point $P$. Suppose that $\Gamma_1$ and $\Gamma_2$; $\Gamma_2$ and $\Gamma_3$; $\Gamma_3$ and $\Gamma_4$; $\Gamma_4$ and $\Gamma_1$ meet at $A$, $B$, $C$, $D$, respectively, and that all these points are different from $P$. Prove that \[ \frac{AB\cdot BC}{AD\cdot DC}=\frac{PB^2}{PD^2}. \]

2021 Iranian Geometry Olympiad, 3

Consider a triangle $ABC$ with altitudes $AD, BE$, and $CF$, and orthocenter $H$. Let the perpendicular line from $H$ to $EF$ intersects $EF, AB$ and $AC$ at $P, T$ and $L$, respectively. Point $K$ lies on the side $BC$ such that $BD=KC$. Let $\omega$ be a circle that passes through $H$ and $P$, that is tangent to $AH$. Prove that circumcircle of triangle $ATL$ and $\omega$ are tangent, and $KH$ passes through the tangency point.

Russian TST 2017, P1

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2023 Euler Olympiad, Round 2, 3

Let $ABCD$ be a convex quadrilateral with side lengths satisfying the equality: $$ AB \cdot CD = AD \cdot BC = AC \cdot BD.$$ Determine the sum of the acute angles of quadrilateral $ABCD$. [i]Proposed by Zaza Meliqidze, Georgia[/i]

2015 Romania Team Selection Tests, 1

Two circles $\gamma $ and $\gamma'$ cross one another at points $A$ and $B$ . The tangent to $\gamma'$ at $A$ meets $\gamma$ again at $C$ , the tangent to $\gamma$ at $A$ meets $\gamma'$ again at $C'$ , and the line $CC'$ separates the points $A$ and $B$ . Let $\Gamma$ be the circle externally tangent to $\gamma$ , externally tangent to $\gamma'$ , tangent to the line $CC'$, and lying on the same side of $CC'$ as $B$ . Show that the circles $\gamma$ and $\gamma'$ intercept equal segments on one of the tangents to $\Gamma$ through $A$ .

2015 İberoAmerican, 2

A line $r$ contains the points $A$, $B$, $C$, $D$ in that order. Let $P$ be a point not in $r$ such that $\angle{APB} = \angle{CPD}$. Prove that the angle bisector of $\angle{APD}$ intersects the line $r$ at a point $G$ such that: $\frac{1}{GA} + \frac{1}{GC} = \frac{1}{GB} + \frac{1}{GD}$

2019 USMCA, 3

Let $ABC$ be a scalene triangle. The incircle of $ABC$ touches $\overline{BC}$ at $D$. Let $P$ be a point on $\overline{BC}$ satisfying $\angle BAP = \angle CAP$, and $M$ be the midpoint of $\overline{BC}$. Define $Q$ to be on $\overline{AM}$ such that $\overline{PQ} \perp \overline{AM}$. Prove that the circumcircle of $\triangle AQD$ is tangent to $\overline{BC}$.

2017 239 Open Mathematical Olympiad, 2

Inside the circle $\omega$ through points $A, B$ point $C$ is chosen. An arbitrary point $X$ is selected on the segment $BC$. The ray $AX$ cuts the circle in $Y$. Prove that all circles $CXY$ pass through a two fixed points that is they intersect and are coaxial, independent of the position of $X$.

2016 Singapore MO Open, 1

Let $D$ be a point in the interior of $\triangle{ABC}$ such that $AB=ab$, $AC=ac$, $BC=bc$, $AD=ad$, $BD=bd$, $CD=cd$. Show that $\angle{ABD}+\angle{ACD}=60^{\circ}$. Source: 2016 Singapore Mathematical Olympiad (Open) Round 2, Problem 1

2019 Romanian Master of Mathematics, 2

Let $ABCD$ be an isosceles trapezoid with $AB\parallel CD$. Let $E$ be the midpoint of $AC$. Denote by $\omega$ and $\Omega$ the circumcircles of the triangles $ABE$ and $CDE$, respectively. Let $P$ be the crossing point of the tangent to $\omega$ at $A$ with the tangent to $\Omega$ at $D$. Prove that $PE$ is tangent to $\Omega$. [i]Jakob Jurij Snoj, Slovenia[/i]

2015 Iberoamerican Math Olympiad, 2

A line $r$ contains the points $A$, $B$, $C$, $D$ in that order. Let $P$ be a point not in $r$ such that $\angle{APB} = \angle{CPD}$. Prove that the angle bisector of $\angle{APD}$ intersects the line $r$ at a point $G$ such that: $\frac{1}{GA} + \frac{1}{GC} = \frac{1}{GB} + \frac{1}{GD}$

2018 Taiwan TST Round 1, 6

Given six points $ A, B, C, D, E, F $ such that $ \triangle BCD \stackrel{+}{\sim} \triangle ECA \stackrel{+}{\sim} \triangle BFA $ and let $ I $ be the incenter of $ \triangle ABC. $ Prove that the circumcenter of $ \triangle AID, \triangle BIE, \triangle CIF $ are collinear. [i]Proposed by Telv Cohl[/i]

2010 ELMO Problems, 3

Let $ABC$ be a triangle with circumcircle $\omega$, incenter $I$, and $A$-excenter $I_A$. Let the incircle and the $A$-excircle hit $BC$ at $D$ and $E$, respectively, and let $M$ be the midpoint of arc $BC$ without $A$. Consider the circle tangent to $BC$ at $D$ and arc $BAC$ at $T$. If $TI$ intersects $\omega$ again at $S$, prove that $SI_A$ and $ME$ meet on $\omega$. [i]Amol Aggarwal.[/i]

2017 Azerbaijan Team Selection Test, 2

Let $ABC$ be a triangle with $AB = AC \neq BC$ and let $I$ be its incentre. The line $BI$ meets $AC$ at $D$, and the line through $D$ perpendicular to $AC$ meets $AI$ at $E$. Prove that the reflection of $I$ in $AC$ lies on the circumcircle of triangle $BDE$.

2022 Bolivia Cono Sur TST, P2

On $\triangle ABC$ if there existed a point $D$ in $AC$ such that $\angle CBD=\angle ABD+60$ and $\angle BDC=30$ and $AB \cdot BC=BD^2$, then find the angles inside the triangle $\triangle ABC$

2019 Tuymaada Olympiad, 8

In $\triangle ABC$ $\angle B$ is obtuse and $AB \ne BC$. Let $O$ is the circumcenter and $\omega$ is the circumcircle of this triangle. $N$ is the midpoint of arc $ABC$. The circumcircle of $\triangle BON$ intersects $AC$ on points $X$ and $Y$. Let $BX \cap \omega = P \ne B$ and $BY \cap \omega = Q \ne B$. Prove that $P, Q$ and reflection of $N$ with respect to line $AC$ are collinear.

2017 USA Team Selection Test, 2

Let $ABC$ be an acute scalene triangle with circumcenter $O$, and let $T$ be on line $BC$ such that $\angle TAO = 90^{\circ}$. The circle with diameter $\overline{AT}$ intersects the circumcircle of $\triangle BOC$ at two points $A_1$ and $A_2$, where $OA_1 < OA_2$. Points $B_1$, $B_2$, $C_1$, $C_2$ are defined analogously. [list=a][*] Prove that $\overline{AA_1}$, $\overline{BB_1}$, $\overline{CC_1}$ are concurrent. [*] Prove that $\overline{AA_2}$, $\overline{BB_2}$, $\overline{CC_2}$ are concurrent on the Euler line of triangle $ABC$. [/list][i]Evan Chen[/i]

2014 Contests, 2

Let $D$ and $E$ be points in the interiors of sides $AB$ and $AC$, respectively, of a triangle $ABC$, such that $DB = BC = CE$. Let the lines $CD$ and $BE$ meet at $F$. Prove that the incentre $I$ of triangle $ABC$, the orthocentre $H$ of triangle $DEF$ and the midpoint $M$ of the arc $BAC$ of the circumcircle of triangle $ABC$ are collinear.

2009 Germany Team Selection Test, 2

Let $ ABCD$ be a convex quadrilateral and let $ P$ and $ Q$ be points in $ ABCD$ such that $ PQDA$ and $ QPBC$ are cyclic quadrilaterals. Suppose that there exists a point $ E$ on the line segment $ PQ$ such that $ \angle PAE \equal{} \angle QDE$ and $ \angle PBE \equal{} \angle QCE$. Show that the quadrilateral $ ABCD$ is cyclic. [i]Proposed by John Cuya, Peru[/i]

2002 Turkey Team Selection Test, 2

Two circles are internally tangent at a point $A$. Let $C$ be a point on the smaller circle other than $A$. The tangent line to the smaller circle at $C$ meets the bigger circle at $D$ and $E$; and the line $AC$ meets the bigger circle at $A$ and $P$. Show that the line $PE$ is tangent to the circle through $A$, $C$, and $E$.