This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 133

2022 Bulgarian Spring Math Competition, Problem 9.2

Let $\triangle ABC$ have median $CM$ ($M\in AB$) and circumcenter $O$. The circumcircle of $\triangle AMO$ bisects $CM$. Determine the least possible perimeter of $\triangle ABC$ if it has integer side lengths.

2023-24 IOQM India, 14

Let $A B C$ be a triangle in the $x y$ plane, where $B$ is at the origin $(0,0)$. Let $B C$ be produced to $D$ such that $B C: C D=1: 1, C A$ be produced to $E$ such that $C A: A E=1: 2$ and $A B$ be produced to $F$ such that $A B: B F=1: 3$. Let $G(32,24)$ be the centroid of the triangle $A B C$ and $K$ be the centroid of the triangle $D E F$. Find the length $G K$.

2015 Junior Regional Olympiad - FBH, 3

Tags: geometry , median
Let $AD$ be a median of $ABC$ and $S$ its midpoint. Let $E$ be a intersection point of $AB$ and $CS$. Prove that $BE=2AE$

Kyiv City MO Juniors 2003+ geometry, 2021.9.5

Let $BM$ be the median of the triangle $ABC$, in which $AB> BC$. Point $P$ is chosen so that $AB \parallel PC$ and$ PM \perp BM$. The point $Q$ is chosen on the line $BP$ so that $\angle AQC = 90^o$, and the points $B$ and $Q$ lie on opposite sides of the line $AC$. Prove that $AB = BQ$. (Mikhail Standenko)

1959 Poland - Second Round, 2

Tags: similar , median , geometry
What relationship between the sides of a triangle makes it similar to the triangle formed by its medians?

Kyiv City MO Juniors 2003+ geometry, 2014.851

On the side $AB$ of the triangle $ABC$ mark the point $K$. The segment $CK$ intersects the median $AM$ at the point $F$. It is known that $AK = AF$. Find the ratio $MF: BK$.

2006 Sharygin Geometry Olympiad, 10.4

Lines containing the medians of the triangle $ABC$ intersect its circumscribed circle for a second time at the points $A_1, B_1, C_1$. The straight lines passing through $A,B,C$ parallel to opposite sides intersect it at points $A_2, B_2, C_2$. Prove that lines $A_1A_2,B_1B_2,C_1C_2$ intersect at one point.

2020 AMC 12/AHSME, 8

Tags: median
What is the median of the following list of $4040$ numbers$?$ $$1, 2, 3, ..., 2020, 1^2, 2^2, 3^2, ..., 2020^2$$ $\textbf{(A) } 1974.5 \qquad \textbf{(B) } 1975.5 \qquad \textbf{(C) } 1976.5 \qquad \textbf{(D) } 1977.5 \qquad \textbf{(E) } 1978.5$

2014 Belarusian National Olympiad, 6

Points $C_1, A_1$ and $B_1$ are marked on the sides $AB, BC$ and $CA$ of a triangle $ABC$ so that the segments $AA_1, BB_1$, and $CC_1$ are concurrent (see the fig.). It is known that the area of the white part of the triangle $ABC$ is equal to the area of its black part. Prove that at least one of the segments $AA_1, BB_1, CC_1$ is a median of the triangle $ABC$. [img]https://1.bp.blogspot.com/-nVVhqdRdf0s/X-WVmt_gyqI/AAAAAAAAM40/943sCRGyCPwT-vqIilTCtXOXHByRLIvPwCLcBGAsYHQ/s0/2014%2Bbelarus%2B11.6.png[/img]

2008 Postal Coaching, 3

Let $ABC$ be a triangle. For any point $X$ on $BC$, let $AX$ meet the circumcircle of $ABC$ in $X'$. Prove or disprove: $XX'$ has maximum length if and only if $AX$ lies between the median and the internal angle bisector from $A$.

1998 Italy TST, 2

In a triangle $ABC$, points $H,M,L$ are the feet of the altitude from $C$, the median from $A$, and the angle bisector from $B$, respectively. Show that if triangle $HML$ is equilateral, then so is triangle $ABC$.

2017 Yasinsky Geometry Olympiad, 6

In the triangle $ABC$ , the angle bisector $AD$ divides the side $BC$ into the ratio $BD: DC = 2: 1$. In what ratio, does the median $CE$ divide this bisector?

2017 Yasinsky Geometry Olympiad, 4

Median $AM$ and the angle bisector $CD$ of a right triangle $ABC$ ($\angle B=90^o$) intersect at the point $O$. Find the area of the triangle $ABC$ if $CO=9, OD=5$.

2011 Bosnia And Herzegovina - Regional Olympiad, 3

Triangle $AOB$ is rotated in plane around point $O$ for $90^{\circ}$ and it maps in triangle $A_1OB_1$ ($A$ maps to $A_1$, $B$ maps to $B_1$). Prove that median of triangle $OAB_1$ of side $AB_1$ is orthogonal to $A_1B$

Kyiv City MO Juniors 2003+ geometry, 2017.9.51

In the triangle $ABC$, the medians $BB_1$ and $CC_1$, which intersect at the point $M$, are drawn. Prove that a circle can be inscribed in the quadrilateral $AC_1MB_1$ if and only if $AB = AC$.

2000 Argentina National Olympiad, 2

Given a triangle $ABC$ with side $AB$ greater than $BC$, let $M$ be the midpoint of $AC$ and $L$ be the point at which the bisector of angle $\angle B$ intersects side $AC$. The line parallel to $AB$, which intersects the bisector $BL$ at $D$, is drawn by $M$, and the line parallel to the side $BC$ that intersects the median $BM$ at $E$ is drawn by $L$. Show that $ED$ is perpendicular to $BL$.

1967 IMO Shortlist, 4

Suppose medians $m_a$ and $m_b$ of a triangle are orthogonal. Prove that: a.) Using medians of that triangle it is possible to construct a rectangular triangle. b.) The following inequality: \[5(a^2+b^2-c^2) \geq 8ab,\] is valid, where $a,b$ and $c$ are side length of the given triangle.

2018 Sharygin Geometry Olympiad, 7

Let $B_1,C_1$ be the midpoints of sides $AC,AB$ of a triangle $ABC$ respectively. The tangents to the circumcircle at $B$ and $C$ meet the rays $CC_1,BB_1$ at points $K$ and $L$ respectively. Prove that $\angle BAK = \angle CAL$.

2020 Yasinsky Geometry Olympiad, 4

The median $AM$ is drawn in the triangle $ABC$ ($AB \ne AC$). The point $P$ is the foot of the perpendicular drawn on the segment $AM$ from the point $B$. On the segment $AM$ we chose such a point $Q$ that $AQ = 2PM$. Prove that $\angle CQM = \angle BAM$.

2016 Sharygin Geometry Olympiad, 1

An altitude $AH$ of triangle $ABC$ bisects a median $BM$. Prove that the medians of triangle $ABM$ are sidelengths of a right-angled triangle. by Yu.Blinkov

2017 Ukraine Team Selection Test, 11

Let $ABC$ be a triangle with circumcircle $\Gamma$ and incenter $I$ and let $M$ be the midpoint of $\overline{BC}$. The points $D$, $E$, $F$ are selected on sides $\overline{BC}$, $\overline{CA}$, $\overline{AB}$ such that $\overline{ID} \perp \overline{BC}$, $\overline{IE}\perp \overline{AI}$, and $\overline{IF}\perp \overline{AI}$. Suppose that the circumcircle of $\triangle AEF$ intersects $\Gamma$ at a point $X$ other than $A$. Prove that lines $XD$ and $AM$ meet on $\Gamma$. [i]Proposed by Evan Chen, Taiwan[/i]

Estonia Open Senior - geometry, 2012.1.3

Let $ABC$ be a triangle with median AK. Let $O$ be the circumcenter of the triangle $ABK$. a) Prove that if $O$ lies on a midline of the triangle $ABC$, but does not coincide with its endpoints, then $ABC$ is a right triangle. b) Is the statement still true if $O$ can coincide with an endpoint of the midsegment?

2020 Ukrainian Geometry Olympiad - December, 3

In a triangle $ABC$ with an angle $\angle CAB =30^o$ draw median $CD$. If the formed $\vartriangle ACD$ is isosceles, find tan $\angle DCB$.

Swiss NMO - geometry, 2005.1

Let $ABC$ be any triangle and $D, E, F$ the midpoints of $BC, CA, AB$. The medians $AD, BE$ and $CF$ intersect at point $S$. At least two of the quadrilaterals $AF SE, BDSF, CESD$ are cyclic. Show that the triangle $ABC$ is equilateral.

2022 Tuymaada Olympiad, 8

Tags: sine , median , geometry
In an acute triangle $\triangle ABC$ the points $C_m, A_m, B_m$ are the midpoints of $AB, BC, CA$ respectively. Inside the triangle $\triangle ABC$ a point $P$ is chosen so that $\angle PCB = \angle B_mBC$ and $\angle PAB = \angle ABB_m.$ A line passing through $P$ and perpendicular to $AC$ meets the median $BB_m$ at $E.$ Prove that $E$ lies on the circumcircle of the triangle $\triangle A_mB_mC_m.$ [i](K. Ivanov )[/i]