This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 300

2014 Belarus Team Selection Test, 2

Tags: geometry , locus , midpoint
Given a triangle $ABC$. Let $S$ be the circle passing through $C$, centered at $A$. Let $X$ be a variable point on $S$ and let $K$ be the midpoint of the segment $CX$ . Find the locus of the midpoints of $BK$, when $X$ moves along $S$. (I. Gorodnin)

1985 All Soviet Union Mathematical Olympiad, 404

The convex pentagon $ABCDE$ was drawn in the plane. $A_1$ was symmetric to $A$ with respect to $B$. $B_1$ was symmetric to $B$ with respect to $C$. $C_1$ was symmetric to $C$ with respect to $D$. $D_1$ was symmetric to $D$ with respect to $E$. $E_1$ was symmetric to $E$ with respect to $A$. How is it possible to restore the initial pentagon with the compasses and ruler, knowing $A_1,B_1,C_1,D_1,E_1$ points?

1995 Bulgaria National Olympiad, 4

Points $A_1,B_1,C_1$ are selected on the sides $BC$,$CA$,$AB$ respectively of an equilateral triangle $ABC$ in such a way that the inradii of the triangles $C_1AB_1$, $A_1BC_1$, $B_1CA_1$ and $A_1B_1C_1$ are equal. Prove that $A_1,B_1,C_1$ are the midpoints of the corresponding sides.

Novosibirsk Oral Geo Oly VIII, 2020.5

Line $\ell$ is perpendicular to one of the medians of the triangle. The median perpendiculars to the sides of this triangle intersect the line $\ell$ at three points. Prove that one of them is the midpoint of the segment formed by the other two.

2018 Yasinsky Geometry Olympiad, 2

Let $ABCD$ be a parallelogram, such that the point $M$ is the midpoint of the side $CD$ and lies on the bisector of the angle $\angle BAD$. Prove that $\angle AMB = 90^o$.

2011 Sharygin Geometry Olympiad, 2

Quadrilateral $ABCD$ is circumscribed. Its incircle touches sides $AB, BC, CD, DA$ in points $K, L, M, N$ respectively. Points $A', B', C', D'$ are the midpoints of segments $LM, MN, NK, KL$. Prove that the quadrilateral formed by lines $AA', BB', CC', DD'$ is cyclic.

1990 Bundeswettbewerb Mathematik, 4

Suppose that every two opposite edges of a tetrahedron are orthogonal. Show that the midpoints of the six edges lie on a sphere.

2022 Harvard-MIT Mathematics Tournament, 5

Let $ABC$ be a triangle with centroid $G$, and let $E$ and $F$ be points on side $BC$ such that $BE = EF = F C$. Points $X$ and $Y$ lie on lines $AB$ and $AC$, respectively, so that $X$, $Y$ , and $G$ are not collinear. If the line through $E$ parallel to $XG$ and the line through $F$ parallel to $Y G$ intersect at $P\ne G$, prove that $GP$ passes through the midpoint of $XY$.

2018 Yasinsky Geometry Olympiad, 1

In the triangle $ABC$, $AD$ is altitude, $M$ is the midpoint of $BC$. It is known that $\angle BAD = \angle DAM = \angle MAC$. Find the values of the angles of the triangle $ABC$

2008 Estonia Team Selection Test, 5

Points $A$ and $B$ are fixed on a circle $c_1$. Circle $c_2$, whose centre lies on $c_1$, touches line $AB$ at $B$. Another line through $A$ intersects $c_2$ at points $D$ and $E$, where $D$ lies between $A$ and $E$. Line $BD$ intersects $c_1$ again at $F$. Prove that line $EB$ is tangent to $c_1$ if and only if $D$ is the midpoint of the segment $BF$.

VMEO III 2006, 11.2

Tags: midpoint , locus , geometry
Let $ABCD$ be an isosceles trapezoid, with a large base $CD$ and a small base $AB$. Let $M$ be any point on side $AB$ and $(d)$ be the line through $M$ and perpendicular to $AB$. Two rays $Mx$ and $My$ are said to satisfy the condition $(T)$ if they are symmetric about each other through $(d)$ and intersect the two rays $AD$ and $BC$ at $E$ and $F$ respectively. Find the locus of the midpoint of the segment $EF$ when the two rays $Mx$ and $My$ change and satisfy condition $(T)$.

2010 Sharygin Geometry Olympiad, 6

Let $E, F$ be the midpoints of sides $BC, CD$ of square $ABCD$. Lines $AE$ and $BF$ meet at point $P$. Prove that $\angle PDA = \angle AED$.

2011 Korea Junior Math Olympiad, 5

In triangle $ABC$, ($AB \ne AC$), let the orthocenter be $H$, circumcenter be $O$, and the midpoint of $BC$ be $M$. Let $HM \cap AO = D$. Let $P,Q,R,S$ be the midpoints of $AB,CD,AC,BD$. Let $X = PQ\cap RS$. Find $AH/OX$.

2005 Sharygin Geometry Olympiad, 11.2

Convex quadrilateral $ABCD$ is given. Lines $BC$ and $AD$ intersect at point $O$, with $B$ lying on the segment $OC$, and $A$ on the segment $OD$. $I$ is the center of the circle inscribed in the $OAB$ triangle, $J$ is the center of the circle exscribed in the triangle $OCD$ touching the side of $CD$ and the extensions of the other two sides. The perpendicular from the midpoint of the segment $IJ$ on the lines $BC$ and $AD$ intersect the corresponding sides of the quadrilateral (not the extension) at points $X$ and $Y$. Prove that the segment $XY$ divides the perimeter of the quadrilateral$ABCD$ in half, and from all segments with this property and ends on $BC$ and $AD$, segment $XY$ has the smallest length.

2015 Romania National Olympiad, 3

In the convex quadrilateral $ABCD$ we have that $\angle BCD = \angle ADC \ge 90 ^o$. The bisectors of $\angle BAD$ and $\angle ABC$ intersect in $M$. Prove that if $M \in CD$, then $M$ is the middle of $CD$.

2014 Greece Junior Math Olympiad, 1

Let $ABC$ be a triangle and let $M$ be the midpoint $BC$. On the exterior of the triangle, consider the parallelogram $BCDE$ such that $BE//AM$ and $BE=AM/2$ . Prove that line $EM$ passes through the midpoint of segment $AD$.

1992 Tournament Of Towns, (330) 2

Sides of a triangle are equal to $3$, $4$ and $5$. Each side is extended until it intersects the bisector of the external angle to the angle opposite to it. Three such points are obtained in all. Prove that one of the three points we get is the midpoint of the segment joining the other two points. (V. Prasolov)

1956 Moscow Mathematical Olympiad, 328

In a convex quadrilateral $ABCD$, consider quadrilateral $KLMN$ formed by the centers of mass of triangles $ABC, BCD, DBA, CDA$. Prove that the straight lines connecting the midpoints of the opposite sides of quadrilateral $ABCD$ meet at the same point as the straight lines connecting the midpoints of the opposite sides of $KLMN$.

2020 New Zealand MO, 2

Let $ABCD$ be a square and let $X$ be any point on side $BC$ between $B$ and $C$. Let $Y$ be the point on line $CD$ such that $BX = YD$ and $D$ is between $C$ and $Y$ . Prove that the midpoint of $XY$ lies on diagonal $BD$.

2015 Oral Moscow Geometry Olympiad, 2

Line $\ell$ is perpendicular to one of the medians of the triangle. The perpendicular bisectors of the sides of this triangle intersect line $\ell$ at three points. Prove that one of them is the midpoint of the segment formed by the remaining two.

2004 Oral Moscow Geometry Olympiad, 1

Tags: midpoint , geometry , ratio
$E$ and $F$ are the midpoints of the sides $BC$ and $AD$ of the convex quadrilateral $ABCD$. Prove that the segment $EF$ divides the diagonals $AC$ and $BD$ in the same ratio.

2013 Saudi Arabia BMO TST, 6

Let $ABC$ be a triangle with incenter $I,$ and let $D,E,F$ be the midpoints of sides $BC, CA, AB$, respectively. Lines $BI$ and $DE$ meet at $P $ and lines $CI$ and $DF$ meet at $Q$. Line $PQ$ meets sides $AB$ and $AC$ at $T$ and $S$, respectively. Prove that $AS = AT$

1991 Austrian-Polish Competition, 3

Given two distinct points $A_1,A_2$ in the plane, determine all possible positions of a point $A_3$ with the following property: There exists an array of (not necessarily distinct) points $P_1,P_2,...,P_n$ for some $n \ge 3$ such that the segments $P_1P_2,P_2P_3,...,P_nP_1$ have equal lengths and their midpoints are $A_1, A_2, A_3, A_1, A_2, A_3, ...$ in this order.

2018 Oral Moscow Geometry Olympiad, 4

On the side $AB$ of the triangle $ABC$, point $M$ is selected. In triangle $ACM$ point $I_1$ is the center of the inscribed circle, $J_1$ is the center of excircle wrt side $CM$. In the triangle $BCM$ point $I_2$ is the center of the inscribed circle, $J_2$ is the center of excircle wrt side $CM$. Prove that the line passing through the midpoints of the segments $I_1I_2$ and $J_1J_2$ is perpendicular to $AB$.

2016 Middle European Mathematical Olympiad, 6

Let $ABC$ be a triangle for which $AB \neq AC$. Points $K$, $L$, $M$ are the midpoints of the sides $BC$, $CA$, $AB$. The incircle of $ABC$ with center $I$ is tangent to $BC$ in $D$. A line passing through the midpoint of $ID$ perpendicular to $IK$ meets the line $LM$ in $P$. Prove that $\angle PIA = 90 ^{\circ}$.