Found problems: 316
2016 Rioplatense Mathematical Olympiad, Level 3, 3
Let $A B C$ be an acute-angled triangle of circumcenter $O$ and orthocenter $H$. Let $M$ be the midpoint of $BC, N$ be the symmetric of $H$ with respect to $A, P$ be the midpoint of $NM$ and $X$ be a point on the line A H such that $MX$ is parallel to $CH$. Prove that $BX$ and $OP$ are perpendicular.
2018 Iran MO (3rd Round), 4
for acute triangle $\triangle ABC$ with orthocenter $H$, and $E,F$ the feet of altitudes for $B,C$, we have $P$ on $EF$ such as that $HO \perp HP$. $Q$ is on segment $AH$ so $HM \perp PQ$. prove $QA=3QH$
2023 Bangladesh Mathematical Olympiad, P9
Let $A_1A_2\dots A_{2n}$ be a regular $2n$-gon inscribed in circle $\omega$. Let $P$ be any point on the circle $\omega$. Let $H_1,H_2,\dots, H_n$ be orthocenters of triangles $PA_1A_2, PA_3A_4,\dots, PA_{2n-1}A_{2n}$ respectively. Prove that $H_1H_2\dots H_n$ is a regular $n$-gon.
2019 Tournament Of Towns, 2
Let $\omega$ be a circle with the center $O$ and $A$ and $C$ be two different points on $\omega$. For any third point $P$ of the circle let $X$ and $Y$ be the midpoints of the segments $AP$ and $CP$. Finally, let $H$ be the orthocenter (the point of intersection of the altitudes) of the triangle $OXY$ . Prove that the position of the point H does not depend on the choice of $P$.
(Artemiy Sokolov)
2020 SAFEST Olympiad, 4
Let $O$ be the circumcenter and $H$ the orthocenter of an acute-triangle $ABC$. The perpendicular bisector of $AO$ intersects the line $BC$ at point $S$. Let $L$ be the midpoint of $OH$. Prove that $\angle OAH = \angle LSA$.
2014 Junior Balkan Team Selection Tests - Romania, 5
Let $D$ and $E$ be the midpoints of sides $[AB]$ and $[AC]$ of the triangle $ABC$. The circle of diameter $[AB]$ intersects the line $DE$ on the opposite side of $AB$ than $C$, in $X$. The circle of diameter $[AC]$ intersects $DE$ on the opposite side of $AC$ than $B$ in $Y$ . Let $T$ be the intersection of $BX$ and $CY$.
Prove that the orthocenter of triangle $XY T$ lies on $BC$.
2006 Sharygin Geometry Olympiad, 9.6
A convex quadrilateral $ABC$ is given. $A',B',C',D'$ are the orthocenters of triangles $BCD, CDA, DAB, ABC$ respectively. Prove that in the quadrilaterals $ABCP$ and $A'B'C'D'$, the corresponding diagonals share the intersection points in the same ratio.
2001 Saint Petersburg Mathematical Olympiad, 11.5
Let $I$ and $H$ be the incenter and orthocenter of an acute triangle $ABC$. $M$ is the midpoint of arc $AC$ of circumcircle of triangle $ABC$ which does not contain point $B$. If $MI=MH$, find the measure of angle $\angle ABC$.
[I]Proposed by F. Bakharev[/i]
2005 Sharygin Geometry Olympiad, 16
We took a non-equilateral acute-angled triangle and marked $4$ wonderful points in it: the centers of the inscribed and circumscribed circles, the center of gravity (the point of intersection of the medians) and the intersection point of altitudes. Then the triangle itself was erased. It turned out that it was impossible to establish which of the centers corresponds to each of the marked points. Find the angles of the triangle
2010 Puerto Rico Team Selection Test, 4
Let $ABC$ be an acute triangle such that $AB>BC>AC$. Let $D$ be a point different from $C$ on the segment $BC$, such that $AC=AD$. Let $H$ be the orthocenter of triangle $ABC$ and let $A_1$ and $B_1$ be the intersections of the heights from $A$ and $B$ to the opposite sides, respectively. Let $E$ be the intersection of the lines $A_1B_1$ and $DH$. Prove that $B$, $D$, $B_1$, $E$ are concyclic.
2013 Junior Balkan Team Selection Tests - Romania, 4
Let $H$ be the orthocenter of an acute-angled triangle $ABC$ and $P$ a point on the circumcenter of triangle $ABC$. Prove that the Simson line of $P$ bisects the segment $[P H]$.
2001 Kazakhstan National Olympiad, 2
In the acute triangle $ ABC $, $ L $, $ H $ and $ M $ are the intersection points of bisectors, altitudes and medians, respectively, and $ O $ is the center of the circumscribed circle. Denote by $ X $, $ Y $ and $ Z $ the intersection points of $ AL $, $ BL $ and $ CL $ with a circle, respectively. Let $ N $ be a point on the line $ OL $ such that the lines $ MN $ and $ HL $ are parallel. Prove that $ N $ is the intersection point of the medians of $ XYZ $.
2025 Bulgarian Winter Tournament, 10.2
Let $D$ be an arbitrary point on the side $BC$ of the non-isosceles acute triangle $ABC$. The circle with center $D$ and radius $DA$ intersects the rays $AB^\to$ (after $B$) and $AC^\to$ (after $C$) at $M$ and $N$. Prove that the orthocenter of triangle $AMN$ lies on a fixed line, independent of the choice of $D$.
2014 Contests, 1
Let $k$ be a given circle and $A$ is a fixed point outside $k$. $BC$ is a diameter of $k$. Find the locus of the orthocentre of $\triangle ABC$ when $BC$ varies.
[i]Proposed by T. Vitanov, E. Kolev[/i]
2020 Ukrainian Geometry Olympiad - April, 3
Let $H$ be the orthocenter of the acute-angled triangle $ABC$. Inside the segment $BC$ arbitrary point $D$ is selected. Let $P$ be such that $ADPH$ is a parallelogram. Prove that $\angle BCP< \angle BHP$.
Geometry Mathley 2011-12, 8.3
Let $ABC$ be a scalene triangle, $(O)$ and $H$ be the circumcircle and its orthocenter. A line through $A$ is parallel to $OH$ meets $(O)$ at $K$. A line through $K$ is parallel to $AH$, intersecting $(O)$ again at $L$. A line through $L$ parallel to $OA$ meets $OH$ at $E$. Prove that $B,C,O,E$ are on the same circle.
Trần Quang Hùng
2015 Romania Team Selection Tests, 1
Let $ABC$ be a triangle, let $O$ be its circumcenter, let $A'$ be the orthogonal projection of $A$ on the line $BC$, and let $X$ be a point on the open ray $AA'$ emanating from $A$. The internal bisectrix of the angle $BAC$ meets the circumcircle of $ABC$ again at $D$. Let $M$ be the midpoint of the segment $DX$. The line through $O$ and parallel to the line $AD$ meets the line $DX$ at $N$. Prove that the angles $BAM$ and $CAN$ are equal.
1956 Poland - Second Round, 2
Prove that if $ H $ is the point of intersection of the altitudes of a non-right triangle $ ABC $, then the circumcircles of the triangles $ AHB $, $ BHC $, $ CHA $ and $ ABC $ are equal.
2019 Polish MO Finals, 1
Let $ABC$ be an acute triangle. Points $X$ and $Y$ lie on the segments $AB$ and $AC$, respectively, such that $AX=AY$ and the segment $XY$ passes through the orthocenter of the triangle $ABC$. Lines tangent to the circumcircle of the triangle $AXY$ at points $X$ and $Y$ intersect at point $P$. Prove that points $A, B, C, P$ are concyclic.
Ukrainian TYM Qualifying - geometry, 2019.10
At the altitude $AH_1$ of an acute non-isosceles triangle $ABC$ chose a point $X$ , from which draw the perpendiculars $XN$ and $XM$ on the sides $AB$ and $AC$ respectively. It turned out that $H_1A$ is the angle bisector $MH_1N$. Prove that $X$ is the point of intersection of the altitudes of the triangle $ABC$.
2010 N.N. Mihăileanu Individual, 3
Let $ Q $ be a point, $ H,O $ be the orthocenter and circumcenter, respectively, of a triangle $ ABC, $ and $ D,E,F, $ be the symmetric points of $ Q $ with respect to $ A,B,C, $ respectively. Also, $ M,N,P $ are the middle of the segments $ AE,BF,CD, $ and $ G,G',G'' $ are the centroids of $ ABC,MNP,DEF, $ respectively. Prove the following propositions:
[b]a)[/b] $ \frac{1}{2}\overrightarrow{OG} =\frac{1}{3}\overrightarrow{OG'}=\frac{1}{4}\overrightarrow{OG''} $
[b]b)[/b] $ Q=O\implies \overrightarrow{OG'} =\overrightarrow{G'H} $
[b]c)[/b] $ Q=H\implies G'=O $
[i]Cătălin Zîrnă[/i]
2017 ELMO Shortlist, 1
Let $ABC$ be a triangle with orthocenter $H,$ and let $M$ be the midpoint of $\overline{BC}.$ Suppose that $P$ and $Q$ are distinct points on the circle with diameter $\overline{AH},$ different from $A,$ such that $M$ lies on line $PQ.$ Prove that the orthocenter of $\triangle APQ$ lies on the circumcircle of $\triangle ABC.$
[i]Proposed by Michael Ren[/i]
2013 Junior Balkan Team Selection Tests - Romania, 4
Consider acute triangles $ABC$ and $BCD$, with $\angle BAC = \angle BDC$, such that $A$ and $D$ are on opposite sides of line $BC$. Denote by $E$ the foot of the perpendicular line to $AC$ through $B$ and by $F$ the foot of the perpendicular line to $BD$ through $C$. Let $H_1$ be the orthocenter of triangle $ABC$ and $H_2$ be the orthocenter of $BCD$. Show that lines $AD, EF$ and $H_1H_2$ are concurrent.
2012 IFYM, Sozopol, 7
Let $\Delta ABC$ be a triangle with orthocenter $H$ and midpoints $M_a,M_b$, and $M_c$ of $BC$, $AC$, and $AB$ respectively. A circle with center $H$ intersects the lines $M_bM_a$, $M_bM_c$, and $M_cM_a$ in points $U_1,U_2,V_1,V_2,W_1,W_2$ respectively. Prove that $CU_1=CU_2=AV_1=AV_2=BW_1=BW_2$.
1990 IMO Shortlist, 5
Given a triangle $ ABC$. Let $ G$, $ I$, $ H$ be the centroid, the incenter and the orthocenter of triangle $ ABC$, respectively. Prove that $ \angle GIH > 90^{\circ}$.