This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1049

2022 USA TSTST, 7

Let $ABCD$ be a parallelogram. Point $E$ lies on segment $CD$ such that \[2\angle AEB=\angle ADB+\angle ACB,\] and point $F$ lies on segment $BC$ such that \[2\angle DFA=\angle DCA+\angle DBA.\] Let $K$ be the circumcenter of triangle $ABD$. Prove that $KE=KF$. [i]Merlijn Staps[/i]

2016 Nigerian Senior MO Round 2, Problem 9

$ABCD$ is a parallelogram, line $DF$ is drawn bisecting $BC$ at $E$ and meeting $AB$ (extended) at $F$ from vertex $C$. Line $CH$ is drawn bisecting side $AD$ at $G$ and meeting $AB$ (extended) at $H$. Lines $DF$ and $CH$ intersect at $I$. If the area of parallelogram $ABCD$ is $x$, find the area of triangle $HFI$ in terms of $x$.

2020 Ukrainian Geometry Olympiad - April, 5

Given a convex pentagon $ABCDE$, with $\angle BAC = \angle ABE = \angle DEA - 90^o$, $\angle BCA = \angle ADE$ and also $BC = ED$. Prove that $BCDE$ is parallelogram.

2011 China Girls Math Olympiad, 8

The $A$-excircle $(O)$ of $\triangle ABC$ touches $BC$ at $M$. The points $D,E$ lie on the sides $AB,AC$ respectively such that $DE\parallel BC$. The incircle $(O_1)$ of $\triangle ADE$ touches $DE$ at $N$. If $BO_1\cap DO=F$ and $CO_1\cap EO=G$, prove that the midpoint of $FG$ lies on $MN$.

2012 Brazil Team Selection Test, 4

Let $ABCD$ be a convex quadrilateral whose sides $AD$ and $BC$ are not parallel. Suppose that the circles with diameters $AB$ and $CD$ meet at points $E$ and $F$ inside the quadrilateral. Let $\omega_E$ be the circle through the feet of the perpendiculars from $E$ to the lines $AB,BC$ and $CD$. Let $\omega_F$ be the circle through the feet of the perpendiculars from $F$ to the lines $CD,DA$ and $AB$. Prove that the midpoint of the segment $EF$ lies on the line through the two intersections of $\omega_E$ and $\omega_F$. [i]Proposed by Carlos Yuzo Shine, Brazil[/i]

2006 CentroAmerican, 2

Let $\Gamma$ and $\Gamma'$ be two congruent circles centered at $O$ and $O'$, respectively, and let $A$ be one of their two points of intersection. $B$ is a point on $\Gamma$, $C$ is the second point of intersection of $AB$ and $\Gamma'$, and $D$ is a point on $\Gamma'$ such that $OBDO'$ is a parallelogram. Show that the length of $CD$ does not depend on the position of $B$.

2011 All-Russian Olympiad, 2

On side $BC$ of parallelogram $ABCD$ ($A$ is acute) lies point $T$ so that triangle $ATD$ is an acute triangle. Let $O_1$, $O_2$, and $O_3$ be the circumcenters of triangles $ABT$, $DAT$, and $CDT$ respectively. Prove that the orthocenter of triangle $O_1O_2O_3$ lies on line $AD$.

2014 European Mathematical Cup, 3

Let $ABCD$ be a cyclic quadrilateral in which internal angle bisectors $\angle ABC$ and $\angle ADC$ intersect on diagonal $AC$. Let $M$ be the midpoint of $AC$. Line parallel to $BC$ which passes through $D$ cuts $BM$ at $E$ and circle $ABCD$ in $F$ ($F \neq D$ ). Prove that $BCEF$ is parallelogram [i]Proposed by Steve Dinh[/i]

2015 Portugal MO, 4

Let $[ABCD]$ be a parallelogram and $P$ a point between $C$ and $D$. The line parallel to $AD$ that passes through $P$ intersects the diagonal $AC$ in $Q$. Knowing that the area of $[PBQ]$ is $2$ and the area of $[ABP]$ is $6$, determine the area of $[PBC]$. [img]https://cdn.artofproblemsolving.com/attachments/0/8/664a00020065b7ad6300a062613fca4650b8d0.png[/img]

2004 Alexandru Myller, 2

On a non-rhombus parallelogram $ ABCD, $ the vertex $ B $ is projected on $ AC $ in the point $ E. $ The perpendicular on $ BD $ thru $ E $ intersects the lines $ BC $ and $ AB $ in $ F $ and $ G, $ respectively. Show that $ EF=EG $ if and only if $ \angle ABC=90^{\circ } . $ [i]Mircea Becheanu[/i]

2019 Philippine TST, 4

Let $P$ be a point in parallelogram $ABCD$ such that $$PA \cdot PC + PB \cdot PD = AB \cdot BC.$$ Prove that the reflections of $P$ over lines $AB$, $BC$, $CD$, and $DA$ are concyclic.

1964 AMC 12/AHSME, 22

Given parallelogram $ABCD$ with $E$ the midpoint of diagonal $BD$. Point $E$ is connected to a point $F$ in $DA$ so that $DF=\frac{1}{3}DA$. What is the ratio of the area of triangle $DFE$ to the area of quadrilateral $ABEF$? $ \textbf{(A)}\ 1:2 \qquad\textbf{(B)}\ 1:3 \qquad\textbf{(C)}\ 1:5 \qquad\textbf{(D)}\ 1:6 \qquad\textbf{(E)}\ 1:7 $

2005 Iran Team Selection Test, 2

Assume $ABC$ is an isosceles triangle that $AB=AC$ Suppose $P$ is a point on extension of side $BC$. $X$ and $Y$ are points on $AB$ and $AC$ that: \[PX || AC \ , \ PY ||AB \] Also $T$ is midpoint of arc $BC$. Prove that $PT \perp XY$

2020 Latvia TST, 1.1

It is given parallelogram $ABCD$. On it's sides $AB, BC, CD, DA$ are chosen points $E, F, G, H$ such that area of $EFGH$ is half of the area of $ABCD$. Show that at least one of the quadrilaterals $ABFH$ and $AEGD$ is parallelogram.

2015 HMNT, 1-9

Since guts has 36 questions, they will be combined into posts. 1.[b][5][/b] Farmer Yang has a $2015$ × $2015$ square grid of corn plants. One day, the plant in the very center of the grid becomes diseased. Every day, every plant adjacent to a diseased plant becomes diseased. After how many days will all of Yang's corn plants be diseased? 2. [b][5][/b] The three sides of a right triangle form a geometric sequence. Determine the ratio of the length of the hypotenuse to the length of the shorter leg. 3. [b][5][/b] A parallelogram has $2$ sides of length $20$ and $15$. Given that its area is a positive integer, find the minimum possible area of the parallelogram. 4. [b][6][/b] Eric is taking a biology class. His problem sets are worth $100$ points in total, his three midterms are worth $100$ points each, and his final is worth $300$ points. If he gets a perfect score on his problem sets and scores $60\%$,$70\%$, and $80\%$ on his midterms respectively, what is the minimum possible percentage he can get on his final to ensure a passing grade? (Eric passes if and only if his overall percentage is at least $70\%$). 5. [b][6][/b] James writes down three integers. Alex picks some two of those integers, takes the average of them, and adds the result to the third integer. If the possible final results Alex could get are $42$, $13$, and $37$, what are the three integers James originally chose? 6. [b][6][/b] Let $AB$ be a segment of length $2$ with midpoint $M$. Consider the circle with center $O$ and radius $r$ that is externally tangent to the circles with diameters $AM$ and $BM$ and internally tangent to the circle with diameter $AB$. Determine the value of $r$. 7. [b][7][/b] Let n be the smallest positive integer with exactly $2015$ positive factors. What is the sum of the (not necessarily distinct) prime factors of n? For example, the sum of the prime factors of $72$ is $2 + 2 + 2 + 3 + 3 = 14$. 8. [b][7][/b] For how many pairs of nonzero integers $(c, d)$ with $-2015 \le c,d \le 2015$ do the equations $cx = d$ and $dx = c$ both have an integer solution? 9. [b][7][/b] Find the smallest positive integer n such that there exists a complex number z, with positive real and imaginary part, satisfying $z^n = (\overline{z})^n$.

2010 Germany Team Selection Test, 1

Let $ABC$ be a triangle. The incircle of $ABC$ touches the sides $AB$ and $AC$ at the points $Z$ and $Y$, respectively. Let $G$ be the point where the lines $BY$ and $CZ$ meet, and let $R$ and $S$ be points such that the two quadrilaterals $BCYR$ and $BCSZ$ are parallelogram. Prove that $GR=GS$. [i]Proposed by Hossein Karke Abadi, Iran[/i]

2001 Baltic Way, 6

The points $A, B, C, D, E$ lie on the circle $c$ in this order and satisfy $AB\parallel EC$ and $AC\parallel ED$. The line tangent to the circle $c$ at $E$ meets the line $AB$ at $P$. The lines $BD$ and $EC$ meet at $Q$. Prove that $|AC|=|PQ|$.

2020 Junior Macedonian National Olympiad, 4

Let $ABC$ be an isosceles triangle with base $AC$. Points $D$ and $E$ are chosen on the sides $AC$ and $BC$, respectively, such that $CD = DE$. Let $H, J,$ and $K$ be the midpoints of $DE, AE,$ and $BD$, respectively. The circumcircle of triangle $DHK$ intersects $AD$ at point $F$, whereas the circumcircle of triangle $HEJ$ intersects $BE$ at $G$. The line through $K$ parallel to $AC$ intersects $AB$ at $I$. Let $IH \cap GF =$ {$M$}. Prove that $J, M,$ and $K$ are collinear points.

2018 May Olympiad, 4

In a parallelogram $ABCD$, let $M$ be the point on the $BC$ side such that $MC = 2BM$ and let $N$ be the point of side $CD$ such that $NC = 2DN$. If the distance from point $B$ to the line $AM$ is $3$, calculate the distance from point $N$ to the line $AM$.

1992 India Regional Mathematical Olympiad, 4

$ABCD$ is a cyclic quadrilateral with $AC \perp BD$; $AC$ meets $BD$ at $E$. Prove that \[ EA^2 + EB^2 + EC^2 + ED^2 = 4 R^2 \] where $R$ is the radius of the circumscribing circle.

1996 Turkey Team Selection Test, 2

In a parallelogram $ABCD$ with $\angle A < 90$, the circle with diameter $AC$ intersects the lines $CB$ and $CD$ again at $E$ and $F$ , and the tangent to this circle at $A$ meets the line $BD$ at $P$ . Prove that the points $P$, $E$, $F$ are collinear.

III Soros Olympiad 1996 - 97 (Russia), 11.5

The area of a convex quadrilateral is $S$, and the angle between the diagonals is $a$. On the sides of this quadrilateral, as on the bases, isosceles triangles with vertex angle equal to $\phi$, wherein two opposite triangles are located on the other side of the corresponding side of the quadrilateral than the quadrilateral itself, and the other two are located on the other side. Prove that the vertices of the constructed triangles, different from the vertices of the quadrilateral, serve as the vertices of a parallelogram. Find the area of this parallelogram.

2014 Contests, 2 juniors

Let $ABCD$ be a parallelogram with an acute angle at $A$. Let $G$ be a point on the line $AB$, distinct from $B$, such that $|CG| = |CB|$. Let $H$ be a point on the line $BC$, distinct from $B$, such that $|AB| =|AH|$. Prove that triangle $DGH$ is isosceles. [asy] unitsize(1.5 cm); pair A, B, C, D, G, H; A = (0,0); B = (2,0); D = (0.5,1.5); C = B + D - A; G = reflect(A,B)*(C) + C - B; H = reflect(B,C)*(H) + A - B; draw(H--A--D--C--G); draw(interp(A,G,-0.1)--interp(A,G,1.1)); draw(interp(C,H,-0.1)--interp(C,H,1.1)); draw(D--G--H--cycle, dashed); dot("$A$", A, SW); dot("$B$", B, SE); dot("$C$", C, E); dot("$D$", D, NW); dot("$G$", G, NE); dot("$H$", H, SE); [/asy]

2006 Mediterranean Mathematics Olympiad, 2

Let $P$ be a point inside a triangle $ABC$, and $A_1B_2,B_1C_2,C_1A_2$ be segments passing through $P$ and parallel to $AB, BC, CA$ respectively, where points $A_1, A_2$ lie on $BC, B_1, B_2$ on $CA$, and $C_1,C_2$ on $AB$. Prove that \[ \text{Area}(A_1A_2B_1B_2C_1C_2) \ge \frac{1}{2}\text{Area}(ABC)\]

2002 AMC 10, 25

In trapezoid $ ABCD$ with bases $ AB$ and $ CD$, we have $ AB\equal{}52$, $ BC\equal{}12$, $ CD\equal{}39$, and $ DA\equal{}5$. The area of $ ABCD$ is [asy] pair A,B,C,D; A=(0,0); B=(52,0); C=(38,20); D=(5,20); dot(A); dot(B); dot(C); dot(D); draw(A--B--C--D--cycle); label("$A$",A,S); label("$B$",B,S); label("$C$",C,N); label("$D$",D,N); label("52",(A+B)/2,S); label("39",(C+D)/2,N); label("12",(B+C)/2,E); label("5",(D+A)/2,W);[/asy] $ \text{(A)}\ 182 \qquad \text{(B)}\ 195 \qquad \text{(C)}\ 210 \qquad \text{(D)}\ 234 \qquad \text{(E)}\ 260$