This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 663

2003 Dutch Mathematical Olympiad, 1

A Pythagorean triangle is a right triangle whose three sides are integers. The best known example is the triangle with rectangular sides $3$ and $4$ and hypotenuse $5$. Determine all Pythagorean triangles whose area is twice the perimeter.

2015 AMC 12/AHSME, 20

Isosceles triangles $T$ and $T'$ are not congruent but have the same area and the same perimeter. The sides of $T$ have lengths $5$, $5$, and $8$, while those of $T'$ have lengths $a$, $a$, and $b$. Which of the following numbers is closest to $b$? $\textbf{(A) }3\qquad\textbf{(B) }4\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }8$

2019 PUMaC Geometry B, 7

Let two ants stand on the perimeter of a regular $2019$-gon of unit side length. One of them stands on a vertex and the other one is on the midpoint of the opposite side. They start walking along the perimeter at the same speed counterclockwise. The locus of their midpoints traces out a figure $P$ in the plane with $N$ corners. Let the area enclosed by the convex hull of $P$ be $\tfrac{A}{B}\tfrac{\sin^m\left(\tfrac{\pi}{4038}\right)}{\tan\left(\tfrac{\pi}{2019}\right)}$, where $A$ and $B$ are coprime positive integers, and $m$ is the smallest possible positive integer such that this formula holds. Find $A+B+m+N$. [i]Note:[/i] The [i]convex hull[/i] of a figure $P$ is the convex polygon of smallest area which contains $P$.

2012 Federal Competition For Advanced Students, Part 2, 3

Given an equilateral triangle $ABC$ with sidelength 2, we consider all equilateral triangles $PQR$ with sidelength 1 such that [list] [*]$P$ lies on the side $AB$, [*]$Q$ lies on the side $AC$, and [*]$R$ lies in the inside or on the perimeter of $ABC$.[/list] Find the locus of the centroids of all such triangles $PQR$.

2004 France Team Selection Test, 2

Let $P$, $Q$, and $R$ be the points where the incircle of a triangle $ABC$ touches the sides $AB$, $BC$, and $CA$, respectively. Prove the inequality $\frac{BC} {PQ} + \frac{CA} {QR} + \frac{AB} {RP} \geq 6$.

2015 Regional Olympiad of Mexico Southeast, 3

If $T(n)$ is the numbers of triangles with integers sizes(not congruent with each other) with it´s perimeter is equal to $n$, prove that: $$T(2012)<T(2015)$$ $$T(2013)=T(2016)$$

2007 Tournament Of Towns, 2

$K, L, M$ and $N$ are points on sides $AB, BC, CD$ and $DA$, respectively, of the unit square $ABCD$ such that $KM$ is parallel to $BC$ and $LN$ is parallel to $AB$. The perimeter of triangle $KLB$ is equal to $1$. What is the area of triangle $MND$?

2013 Online Math Open Problems, 7

Jacob's analog clock has 12 equally spaced tick marks on the perimeter, but all the digits have been erased, so he doesn't know which tick mark corresponds to which hour. Jacob takes an arbitrary tick mark and measures clockwise to the hour hand and minute hand. He measures that the minute hand is 300 degrees clockwise of the tick mark, and that the hour hand is 70 degrees clockwise of the same tick mark. If it is currently morning, how many minutes past midnight is it? [i]Ray Li[/i]

2011 Sharygin Geometry Olympiad, 5

The touching point of the excircle with the side of a triangle and the base of the altitude to this side are symmetric wrt the base of the corresponding bisector. Prove that this side is equal to one third of the perimeter.

2011 Tournament of Towns, 2

A rectangle is divided by $10$ horizontal and $10$ vertical lines into $121$ rectangular cells. If $111$ of them have integer perimeters, prove that they all have integer perimeters.

1958 Polish MO Finals, 6

Prove that of all the quadrilaterals circuscribed around a given circle, the square has the smallest perimeter.

1977 AMC 12/AHSME, 15

[asy] size(120); real t = 2/sqrt(3); real x = 1 + sqrt(3); pair A = t*dir(90), D = x*A; pair B = t*dir(210), E = x*B; pair C = t*dir(330), F = x*C; draw(D--E--F--cycle); draw(Circle(A, 1)); draw(Circle(B, 1)); draw(Circle(C, 1)); //Credit to MSTang for the diagram[/asy] Each of the three circles in the adjoining figure is externally tangent to the other two, and each side of the triangle is tangent to two of the circles. If each circle has radius three, then the perimeter of the triangle is $\textbf{(A) }36+9\sqrt{2}\qquad\textbf{(B) }36+6\sqrt{3}\qquad\textbf{(C) }36+9\sqrt{3}\qquad\textbf{(D) }18+18\sqrt{3}\qquad \textbf{(E) }45$

2018 Sharygin Geometry Olympiad, 2

A fixed circle $\omega$ is inscribed into an angle with vertex $C$. An arbitrary circle passing through $C$, touches $\omega$ externally and meets the sides of the angle at points $A$ and $B$. Prove that the perimeters of all triangles $ABC$ are equal.

2014 Purple Comet Problems, 3

The diagram below shows a rectangle with side lengths $36$ and $48$. Each of the sides is trisected and edges are added between the trisection points as shown. Then the shaded corner regions are removed, leaving the octagon which is not shaded in the diagram. Find the perimeter of this octagon. [asy] size(4cm); dotfactor=3.5; pair A,B,C,D,E,F,G,H,W,X,Y,Z; A=(0,12); B=(0,24); C=(16,36); D=(32,36); E=(48,24); F=(48,12); G=(32,0); H=(16,0); W=origin; X=(0,36); Y=(48,36); Z=(48,0); filldraw(W--A--H--cycle^^B--X--C--cycle^^D--Y--E--cycle^^F--Z--G--cycle,rgb(.76,.76,.76)); draw(W--X--Y--Z--cycle,linewidth(1.2)); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); dot(G); dot(H); [/asy]

2011 Albania Team Selection Test, 2

The area and the perimeter of the triangle with sides $10,8,6$ are equal. Find all the triangles with integral sides whose area and perimeter are equal.

2013 Romania National Olympiad, 3

Given $P$ a point m inside a triangle acute-angled $ABC$ and $DEF$ intersections of lines with that $AP$, $BP$, $CP$ with$\left[ BC \right],\left[ CA \right],$respective $\left[ AB \right]$ a) Show that the area of the triangle $DEF$ is at most a quarter of the area of the triangle $ABC$ b) Show that the radius of the circle inscribed in the triangle $DEF$ is at most a quarter of the radius of the circle circumscribed on triangle $4ABC.$

2022 JHMT HS, 8

Let $P = (-4, 0)$ and $Q = (4, 0)$ be two points on the $x$-axis of the Cartesian coordinate plane, and let $X$ and $Y$ be points on the $x$-axis and $y$-axis, respectively, such that over all $Z$ on line $\overleftrightarrow{XY}$, the perimeter of $\triangle ZPQ$ has a minimum value of $25$. What is the smallest possible value of $XY^2$?

2007 Estonia Math Open Junior Contests, 4

Call a scalene triangle K [i]disguisable[/i] if there exists a triangle K′ similar to K with two shorter sides precisely as long as the two longer sides of K, respectively. Call a disguisable triangle [i]integral[/i] if the lengths of all its sides are integers. (a) Find the side lengths of the integral disguisable triangle with the smallest possible perimeter. (b) Let K be an arbitrary integral disguisable triangle for which no smaller integral disguisable triangle similar to it exists. Prove that at least two side lengths of K are perfect squares.

2011 NIMO Problems, 5

In equilateral triangle $ABC$, the midpoint of $\overline{BC}$ is $M$. If the circumcircle of triangle $MAB$ has area $36\pi$, then find the perimeter of the triangle. [i]Proposed by Isabella Grabski [/i]

2012 NIMO Problems, 10

In cyclic quadrilateral $ABXC$, $\measuredangle XAB = \measuredangle XAC$. Denote by $I$ the incenter of $\triangle ABC$ and by $D$ the projection of $I$ on $\overline{BC}$. If $AI = 25$, $ID = 7$, and $BC = 14$, then $XI$ can be expressed as $\frac{a}{b}$ for relatively prime positive integers $a, b$. Compute $100a + b$. [i]Proposed by Aaron Lin[/i]

Novosibirsk Oral Geo Oly VIII, 2017.3

Medians $AA_1, BB_1, CC_1$ and altitudes $AA_2, BB_2, CC_2$ are drawn in triangle $ABC$ . Prove that the length of the broken line $A_1B_2C_1A_2B_1C_2A_1$ is equal to the perimeter of triangle $ABC$.

1982 All Soviet Union Mathematical Olympiad, 348

The $KLMN$ tetrahedron (triangle pyramid) vertices are situated inside or on the faces or on the edges of the $ABCD$ tetrahedron. Prove that perimeter of $KLMN$ is less than $4/3$ perimeter of $ABCD$.

Gheorghe Țițeica 2025, P3

Out of all the nondegenerate triangles with positive integer sides and perimeter $100$, find the one with the smallest area.

1998 Belarus Team Selection Test, 2

The incircle of the triangle $ABC$ touches its sides $AB,BC,CA$ at points $C_1,A_1,B_1$ respectively. If $r$ is the inradius of $\vartriangle ABC, P,P_1$ are the perimeters of $\vartriangle ABC, \vartriangle A_1B_1C_1$ respectively, prove that $P+P_1 \ge 9 \sqrt3 r$. I. Voronovich

2018 Junior Regional Olympiad - FBH, 5

In triangle $ABC$ length of altitude $CH$, with $H \in AB$, is equal to half of side $AB$. If $\angle BAC = 45^{\circ}$ find $\angle ABC$