This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 533

2004 Polish MO Finals, 1

A point $ D$ is taken on the side $ AB$ of a triangle $ ABC$. Two circles passing through $ D$ and touching $ AC$ and $ BC$ at $ A$ and $ B$ respectively intersect again at point $ E$. Let $ F$ be the point symmetric to $ C$ with respect to the perpendicular bisector of $ AB$. Prove that the points $ D,E,F$ lie on a line.

2023 Sharygin Geometry Olympiad, 12

Let $ABC$ be a triangle with obtuse angle $B$, and $P, Q$ lie on $AC$ in such a way that $AP = PB, BQ = QC$. The circle $BPQ$ meets the sides $AB$ and $BC$ at points $N$ and $M$ respectively. $\qquad\textbf{(a)}$ (grades 8-9) Prove that the distances from the common point $R$ of $PM$ and $NQ$ to $A$ and $C$ are equal. $\qquad\textbf{(b)}$ (grades 10-11) Let $BR$ meet $AC$ at point $S$. Prove that $MN \perp OS$, where $O$ is the circumcenter of $ABC$.

2019 Sharygin Geometry Olympiad, 2

Let $P$ be a point on the circumcircle of triangle $ABC$. Let $A_1$ be the reflection of the orthocenter of triangle $PBC$ about the reflection of the perpendicular bisector of $BC$. Points $B_1$ and $C_1$ are defined similarly. Prove that $A_1,B_1,C_1$ are collinear.

2007 Romania Team Selection Test, 1

Let $ ABCD$ be a parallelogram with no angle equal to $ 60^{\textrm{o}}$. Find all pairs of points $ E, F$, in the plane of $ ABCD$, such that triangles $ AEB$ and $ BFC$ are isosceles, of basis $ AB$, respectively $ BC$, and triangle $ DEF$ is equilateral. [i]Valentin Vornicu[/i]

2019 Azerbaijan BMO TST, 2

Let $ABC$ be a triangle inscribed in circle $\Gamma$ with center $O$. Let $H$ be the orthocenter of triangle $ABC$ and let $K$ be the midpoint of $OH$. Tangent of $\Gamma$ at $B$ intersects the perpendicular bisector of $AC$ at $L$. Tangent of $\Gamma$ at $C$ intersects the perpendicular bisector of $AB$ at $M$. Prove that $AK$ and $LM$ are perpendicular. by Michael Sarantis, Greece

2012 May Olympiad, 3

Let $ABC$ be a triangle such that $\angle{ABC} = 2\angle{BCA}$ and $\angle{CAB}>90^\circ$. Let $M$ be the midpoint of $BC$. The line perpendicular to $AC$ that passes through $C$ cuts the line $AB$ at point $D$. Show that $\angle{AMB} = \angle{DMC}$.

2012 Greece Team Selection Test, 2

Given is an acute triangle $ABC$ $\left(AB<AC<BC\right)$,inscribed in circle $c(O,R)$.The perpendicular bisector of the angle bisector $AD$ $\left(D\in BC\right)$ intersects $c$ at $K,L$ ($K$ lies on the small arc $\overarc{AB}$).The circle $c_1(K,KA)$ intersects $c$ at $T$ and the circle $c_2(L,LA)$ intersects $c$ at $S$.Prove that $\angle{BAT}=\angle{CAS}$. [hide=Diagram][asy]import graph; size(10cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -6.94236331697463, xmax = 15.849400903703716, ymin = -5.002235438802758, ymax = 7.893104843949444; /* image dimensions */ pen aqaqaq = rgb(0.6274509803921569,0.6274509803921569,0.6274509803921569); pen uququq = rgb(0.25098039215686274,0.25098039215686274,0.25098039215686274); pen qqqqtt = rgb(0.,0.,0.2); draw((1.8318261909633622,3.572783369254345)--(0.,0.)--(6.,0.)--cycle, aqaqaq); draw(arc((1.8318261909633622,3.572783369254345),0.6426249310341638,-117.14497824050169,-101.88970202103212)--(1.8318261909633622,3.572783369254345)--cycle, qqqqtt); draw(arc((1.8318261909633622,3.572783369254345),0.6426249310341638,-55.85706977865775,-40.60179355918817)--(1.8318261909633622,3.572783369254345)--cycle, qqqqtt); /* draw figures */ draw((1.8318261909633622,3.572783369254345)--(0.,0.), uququq); draw((0.,0.)--(6.,0.), uququq); draw((6.,0.)--(1.8318261909633622,3.572783369254345), uququq); draw(circle((3.,0.7178452373968209), 3.0846882800136055)); draw((2.5345020274407277,0.)--(1.8318261909633622,3.572783369254345)); draw(circle((-0.01850947366601585,1.3533783539547308), 2.889550258039566)); draw(circle((5.553011501106743,2.4491551634556963), 3.887127532933951)); draw((-0.01850947366601585,1.3533783539547308)--(5.553011501106743,2.4491551634556963), linetype("2 2")); draw((1.8318261909633622,3.572783369254345)--(0.7798408954511686,-1.423695174396108)); draw((1.8318261909633622,3.572783369254345)--(5.22015910454883,-1.4236951743961088)); /* dots and labels */ dot((1.8318261909633622,3.572783369254345),linewidth(3.pt) + dotstyle); label("$A$", (1.5831274347452782,3.951671933606579), NE * labelscalefactor); dot((0.,0.),linewidth(3.pt) + dotstyle); label("$B$", (-0.6,0.05), NE * labelscalefactor); dot((6.,0.),linewidth(3.pt) + dotstyle); label("$C$", (6.188606107156787,0.07450151636712989), NE * labelscalefactor); dot((2.5345020274407277,0.),linewidth(3.pt) + dotstyle); label("$D$", (2.3,-0.7), NE * labelscalefactor); dot((-0.01850947366601585,1.3533783539547308),linewidth(3.pt) + dotstyle); label("$K$", (-0.3447473583572136,1.6382221818835927), NE * labelscalefactor); dot((5.553011501106743,2.4491551634556963),linewidth(3.pt) + dotstyle); label("$L$", (5.631664500260511,2.580738747400365), NE * labelscalefactor); dot((0.7798408954511686,-1.423695174396108),linewidth(3.pt) + dotstyle); label("$T$", (0.5977692071595602,-1.960477431907719), NE * labelscalefactor); dot((5.22015910454883,-1.4236951743961088),linewidth(3.pt) + dotstyle); label("$S$", (5.160406217502124,-1.8747941077698307), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy][/hide]

2003 Federal Math Competition of S&M, Problem 3

Let $ABCD$ be a rectangle. Determine the set of all points $P$ from the region between the parallel lines $AB$ and $CD$ such that $\angle APB=\angle CPD$.

2004 National Olympiad First Round, 33

Let $ABCD$ be a trapezoid such that $|AB|=9$, $|CD|=5$ and $BC\parallel AD$. Let the internal angle bisector of angle $D$ meet the internal angle bisectors of angles $A$ and $C$ at $M$ and $N$, respectively. Let the internal angle bisector of angle $B$ meet the internal angle bisectors of angles $A$ and $C$ at $L$ and $K$, respectively. If $K$ is on $[AD]$ and $\dfrac{|LM|}{|KN|} = \dfrac 37$, what is $\dfrac{|MN|}{|KL|}$? $ \textbf{(A)}\ \dfrac{62}{63} \qquad\textbf{(B)}\ \dfrac{27}{35} \qquad\textbf{(C)}\ \dfrac{2}{3} \qquad\textbf{(D)}\ \dfrac{5}{21} \qquad\textbf{(E)}\ \dfrac{24}{63} $

1985 Vietnam Team Selection Test, 2

Let $ ABC$ be a triangle with $ AB \equal{} AC$. A ray $ Ax$ is constructed in space such that the three planar angles of the trihedral angle $ ABCx$ at its vertex $ A$ are equal. If a point $ S$ moves on $ Ax$, find the locus of the incenter of triangle $ SBC$.

2018 Regional Competition For Advanced Students, 2

Let $k$ be a circle with radius $r$ and $AB$ a chord of $k$ such that $AB > r$. Furthermore, let $S$ be the point on the chord $AB$ satisfying $AS = r$. The perpendicular bisector of $BS$ intersects $k$ in the points $C$ and $D$. The line through $D$ and $S$ intersects $k$ for a second time in point $E$. Show that the triangle $CSE$ is equilateral. [i]Proposed by Stefan Leopoldseder[/i]

2001 National Olympiad First Round, 18

A convex polygon has at least one side with length $1$. If all diagonals of the polygon have integer lengths, at most how many sides does the polygon have? $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 5 \qquad\textbf{(C)}\ 7 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ \text{None of the preceding} $

1990 Vietnam National Olympiad, 1

A triangle $ ABC$ is given in the plane. Let $ M$ be a point inside the triangle and $ A'$, $ B'$, $ C'$ be its projections on the sides $ BC$, $ CA$, $ AB$, respectively. Find the locus of $ M$ for which $ MA \cdot MA' \equal{} MB \cdot MB' \equal{} MC \cdot MC'$.

2007 Tournament Of Towns, 1

Let $ABCD$ be a rhombus. Let $K$ be a point on the line $CD$, other than $C$ or $D$, such that $AD = BK$. Let $P$ be the point of intersection of $BD$ with the perpendicular bisector of $BC$. Prove that $A, K$ and $P$ are collinear.

2008 China National Olympiad, 1

Suppose $\triangle ABC$ is scalene. $O$ is the circumcenter and $A'$ is a point on the extension of segment $AO$ such that $\angle BA'A = \angle CA'A$. Let point $A_1$ and $A_2$ be foot of perpendicular from $A'$ onto $AB$ and $AC$. $H_{A}$ is the foot of perpendicular from $A$ onto $BC$. Denote $R_{A}$ to be the radius of circumcircle of $\triangle H_{A}A_1A_2$. Similiarly we can define $R_{B}$ and $R_{C}$. Show that: \[\frac{1}{R_{A}} + \frac{1}{R_{B}} + \frac{1}{R_{C}} = \frac{2}{R}\] where R is the radius of circumcircle of $\triangle ABC$.

2012 Greece National Olympiad, 3

Let an acute-angled triangle $ABC$ with $AB<AC<BC$, inscribed in circle $c(O,R)$. The angle bisector $AD$ meets $c(O,R)$ at $K$. The circle $c_1(O_1,R_1)$(which passes from $A,D$ and has its center $O_1$ on $OA$) meets $AB$ at $E$ and $AC$ at $Z$. If $M,N$ are the midpoints of $ZC$ and $BE$ respectively, prove that: [b]a)[/b]the lines $ZE,DM,KC$ are concurrent at one point $T$. [b]b)[/b]the lines $ZE,DN,KB$ are concurrent at one point $X$. [b]c)[/b]$OK$ is the perpendicular bisector of $TX$.

Novosibirsk Oral Geo Oly VIII, 2020.5

Line $\ell$ is perpendicular to one of the medians of the triangle. The median perpendiculars to the sides of this triangle intersect the line $\ell$ at three points. Prove that one of them is the midpoint of the segment formed by the other two.

2002 Italy TST, 1

A scalene triangle $ABC$ is inscribed in a circle $\Gamma$. The bisector of angle $A$ meets $BC$ at $E$. Let $M$ be the midpoint of the arc $BAC$. The line $ME$ intersects $\Gamma$ again at $D$. Show that the circumcentre of triangle $AED$ coincides with the intersection point of the tangent to $\Gamma$ at $D$ and the line $BC$.

2013 ELMO Shortlist, 13

In $\triangle ABC$, $AB<AC$. $D$ and $P$ are the feet of the internal and external angle bisectors of $\angle BAC$, respectively. $M$ is the midpoint of segment $BC$, and $\omega$ is the circumcircle of $\triangle APD$. Suppose $Q$ is on the minor arc $AD$ of $\omega$ such that $MQ$ is tangent to $\omega$. $QB$ meets $\omega$ again at $R$, and the line through $R$ perpendicular to $BC$ meets $PQ$ at $S$. Prove $SD$ is tangent to the circumcircle of $\triangle QDM$. [i]Proposed by Ray Li[/i]

2011 Indonesia TST, 3

Let $ABC$ and $PQR$ be two triangles such that [list] [b](a)[/b] $P$ is the mid-point of $BC$ and $A$ is the midpoint of $QR$. [b](b)[/b] $QR$ bisects $\angle BAC$ and $BC$ bisects $\angle QPR$ [/list] Prove that $AB+AC=PQ+PR$.

2019 Junior Balkan MO, 3

Triangle $ABC$ is such that $AB < AC$. The perpendicular bisector of side $BC$ intersects lines $AB$ and $AC$ at points $P$ and $Q$, respectively. Let $H$ be the orthocentre of triangle $ABC$, and let $M$ and $N$ be the midpoints of segments $BC$ and $PQ$, respectively. Prove that lines $HM$ and $AN$ meet on the circumcircle of $ABC$.

2009 China Team Selection Test, 2

In convex quadrilateral $ ABCD$, $ CB,DA$ are external angle bisectors of $ \angle DCA,\angle CDB$, respectively. Points $ E,F$ lie on the rays $ AC,BD$ respectively such that $ CEFD$ is cyclic quadrilateral. Point $ P$ lie in the plane of quadrilateral $ ABCD$ such that $ DA,CB$ are external angle bisectors of $ \angle PDE,\angle PCF$ respectively. $ AD$ intersects $ BC$ at $ Q.$ Prove that $ P$ lies on $ AB$ if and only if $ Q$ lies on segment $ EF$.

1995 USAMO, 3

Given a nonisosceles, nonright triangle ABC, let O denote the center of its circumscribed circle, and let $A_1$, $B_1$, and $C_1$ be the midpoints of sides BC, CA, and AB, respectively. Point $A_2$ is located on the ray $OA_1$ so that $OAA_1$ is similar to $OA_2A$. Points $B_2$ and $C_2$ on rays $OB_1$ and $OC_1$, respectively, are defined similarly. Prove that lines $AA_2$, $BB_2$, and $CC_2$ are concurrent, i.e. these three lines intersect at a point.

2014 India National Olympiad, 1

In a triangle $ABC$, let $D$ be the point on the segment $BC$ such that $AB+BD=AC+CD$. Suppose that the points $B$, $C$ and the centroids of triangles $ABD$ and $ACD$ lie on a circle. Prove that $AB=AC$.

2009 Sharygin Geometry Olympiad, 10

Let $ ABC$ be an acute triangle, $ CC_1$ its bisector, $ O$ its circumcenter. The perpendicular from $ C$ to $ AB$ meets line $ OC_1$ in a point lying on the circumcircle of $ AOB$. Determine angle $ C$.