This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 59

1937 Moscow Mathematical Olympiad, 036

* Given a regular dodecahedron. Find how many ways are there to draw a plane through it so that its section of the dodecahedron is a regular hexagon?

2012 District Olympiad, 2

The pyramid $VABCD$ has base the rectangle ABCD, and the side edges are congruent. Prove that the plane $(VCD)$ forms congruent angles with the planes $(VAC)$ and $(BAC)$ if and only if $\angle VAC = \angle BAC $.

2018 Adygea Teachers' Geometry Olympiad, 4

Given a cube $ABCDA_1B_1C_1D_1$ with edge $5$. On the edge $BB_1$ of the cube , point $K$ such thath $BK=4$. a) Construct a cube section with the plane $a$ passing through the points $K$ and $C_1$ parallel to the diagonal $BD_1$. b) Find the angle between the plane $a$ and the plane $BB_1C_1$.

2017 EGMO, 3

There are $2017$ lines in the plane such that no three of them go through the same point. Turbo the snail sits on a point on exactly one of the lines and starts sliding along the lines in the following fashion: she moves on a given line until she reaches an intersection of two lines. At the intersection, she follows her journey on the other line turning left or right, alternating her choice at each intersection point she reaches. She can only change direction at an intersection point. Can there exist a line segment through which she passes in both directions during her journey?

1989 Tournament Of Towns, (237) 1

Is it possible to choose a sphere, a triangular pyramid and a plane so that every plane, parallel to the chosen one, intersects the sphere and the pyramid in sections of equal area? (Problem from Latvia)

1994 Poland - Second Round, 3

A plane passing through the center of a cube intersects the cube in a cyclic hexagon. Show that this hexagon is regular.

1990 Czech and Slovak Olympiad III A, 3

Let $ABCDEFGH$ be a cube. Consider a plane whose intersection with the tetrahedron $ABDE$ is a triangle with an obtuse angle $\varphi.$ Determine all $\varphi>\pi/2$ for which there is such a plane.

1987 Tournament Of Towns, (142) 2

In $3$ dimensional space we are given a parallelogram $ABCD$ and plane $M$. The distances from vertices $A, B$ and $C$ to plane $M$ are $a, b$ and $c$ respectively. Find the distance $d$ from vertex $D$ to the plane $M$ .

1993 Bundeswettbewerb Mathematik, 2

Let $M$ be a finite subset of the plane such that for any two different points $A,B\in M$ there is a point $C\in M$ such that $ABC$ is equilateral. What is the maximal number of points in $M?$

2020 Tournament Of Towns, 3

Is it possible that two cross-sections of a tetrahedron by two different cutting planes are two squares, one with a side of length no greater than $1$ and another with a side of length at least $100$? Mikhail Evdokimov

1991 Romania Team Selection Test, 2

Let $A_1A_2A_3A_4$ be a tetrahedron. For any permutation $(i, j,k,h)$ of $1,2,3,4$ denote: - $P_i$ – the orthogonal projection of $A_i$ on $A_jA_kA_h$; - $B_{ij}$ – the midpoint of the edge $A_iAj$, - $C_{ij}$ – the midpoint of segment $P_iP_j$ - $\beta_{ij}$– the plane $B_{ij}P_hP_k$ - $\delta_{ij}$ – the plane $B_{ij}P_iP_j$ - $\alpha_{ij}$ – the plane through $C_{ij}$ orthogonal to $A_kA_h$ - $\gamma_{ij}$ – the plane through $C_{ij}$ orthogonal to $A_iA_j$. Prove that if the points $P_i$ are not in a plane, then the following sets of planes are concurrent: (a) $\alpha_{ij}$, (b) $\beta_{ij}$, (c) $\gamma_{ij}$, (d) $\delta_{ij}$.

1992 ITAMO, 1

A cube is divided into $27$ equal smaller cubes. A plane intersects the cube. Find the maximum possible number of smaller cubes the plane can intersect.

1997 Mexico National Olympiad, 4

What is the minimum number of planes determined by $6$ points in space which are not all coplanar, and among which no three are collinear?

1952 Moscow Mathematical Olympiad, 227

$99$ straight lines divide a plane into $n$ parts. Find all possible values of $n$ less than $199$.

2016 IFYM, Sozopol, 7

A grasshopper hops from an integer point to another integer point in the plane, where every even jump has a length $\sqrt{98}$ and every odd one - $\sqrt{149}$. What’s the least number of jumps the grasshopper has to make in order to return to its starting point after odd number of jumps?

2018 Polish Junior MO First Round, 7

Square $ABCD$ with sides of length $4$ is a base of a cuboid $ABCDA'B'C'D'$. Side edges $AA'$, $BB'$, $CC'$, $DD'$ of this cuboid have length $7$. Points $K, L, M$ lie respectively on line segments $AA'$, $BB'$, $CC'$, and $AK = 3$, $BL = 2$, $CM = 5$. Plane passing through points $K, L, M$ cuts cuboid on two blocks. Calculate volumes of these blocks.

2000 Tuymaada Olympiad, 2

Is it possible to paint the plane in $4$ colors so that inside any circle are the dots of all four colors?

1981 Austrian-Polish Competition, 8

The plane has been partitioned into $N$ regions by three bunches of parallel lines. What is the least number of lines needed in order that $N > 1981$?

2019 Dürer Math Competition (First Round), P3

Anne has thought of a finite set $A \subseteq \mathbb{R}^2 $ . Bob does not know how many elements $A$ has, but his goal is to completely determine $A$. To achieve this, Bob can chooseany point $b \in \mathbb{R}^2 $ and ask Anne how far it is from$ A$ . Anne replies with the distance, defined as $min \{d(a, b) | a \in A\}$. (Here $d(a, b)$ denotes the distance between points $a, b \in \mathbb{R}$ .) Bob can ask as many questions of this type as he wants, until he can determine A with certainty. a) Can Bob achieve his goal with finitely many questions? b) What if Anne tells Bob in advance that all points of A have both coordinates in the interval$\ [0, 1]\ $? Note: $\mathbb{R}^2$ is the set of points in the plane.

1998 Israel National Olympiad, 1

In space are given $n$ segments $A_iB_i$ and a point $O$ not lying on any segment, such that the sum of the angles $A_iOB_i$ is less than $180^o$ . Prove that there exists a plane passing through $O$ and not intersecting any of the segments.

1939 Moscow Mathematical Olympiad, 053

What is the greatest number of parts that $5$ spheres can divide the space into?

2006 Sharygin Geometry Olympiad, 24

a) Two perpendicular rays are drawn through a fixed point $P$ inside a given circle, intersecting the circle at points $A$ and $B$. Find the geometric locus of the projections of $P$ on the lines $AB$. b) Three pairwise perpendicular rays passing through the fixed point $P$ inside a given sphere intersect the sphere at points $A, B, C$. Find the geometrical locus of the projections $P$ on the $ABC$ plane

1994 ITAMO, 5

Let $OP$ be a diagonal of a unit cube. Find the minimum and the maximum value of the area of the intersection of the cube with a plane through $OP$.

2010 District Olympiad, 3

Consider the cube $ABCDA'B'C'D'$. The bisectors of the angles $\angle A' C'A$ and $\angle A' AC'$ intersect $AA'$ and $A'C$ in the points $P$, respectively $S$. The point $M$ is the foot of the perpendicular from $A'$ on $CP$ , and $N$ is the foot of the perpendicular from $A'$ to $AS$. Point $O$ is the center of the face $ABB'A'$ a) Prove that the planes $(MNO)$ and $(AC'B)$ are parallel. b) Calculate the distance between these planes, knowing that $AB = 1$.

2014 Bosnia And Herzegovina - Regional Olympiad, 4

Determine the set $S$ with minimal number of points defining $7$ distinct lines